Show simple item record

dc.contributor.authorLiu, Taoen
dc.contributor.authorLiu, Zigengen
dc.contributor.authorKim, Gunwooen
dc.contributor.authorFrith, James Ten
dc.contributor.authorGarcia-Araez, Nuriaen
dc.contributor.authorGrey, Clareen
dc.date.accessioned2018-06-27T10:49:48Z
dc.date.available2018-06-27T10:49:48Z
dc.date.issued2017-12en
dc.identifier.issn1433-7851
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/277546
dc.description.abstractNon-aqueous Li-O2 batteries are promising for next generation energy storage. New battery chemistries based on LiOH, rather than Li2O2, have recently been reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, we focus on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements and mass spectrometry, we show that on discharging LiOH forms via a 4 e- oxygen reduction reaction, the H in LiOH coming solely from added H2O and the O from both O2 and H2O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li2O2, LiOH formation over Ru incurs hardly any side reactions, a critical advantage for developing a long-lived battery. An optimized metal catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is able stable towards attack by hydroxyl radicals.
dc.format.mediumPrint-Electronicen
dc.languageengen
dc.publisherJohn Wiley & Sons Ltd.
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleUnderstanding LiOH Chemistry in a Ruthenium-Catalyzed Li-O<sub>2</sub> Battery.en
dc.typeArticle
prism.endingPage16062
prism.issueIdentifier50en
prism.publicationDate2017en
prism.publicationNameAngewandte Chemie (International ed. in English)en
prism.startingPage16057
prism.volume56en
dc.identifier.doi10.17863/CAM.18109
dc.identifier.doi10.17863/CAM.18109
dc.identifier.doi10.17863/CAM.18109
dcterms.dateAccepted2017-10-19en
rioxxterms.versionofrecord10.1002/anie.201709886en
rioxxterms.versionVoR*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-12en
dc.contributor.orcidLiu, Tao [0000-0002-6515-0427]
dc.contributor.orcidLiu, Zigeng [0000-0002-2955-5080]
dc.contributor.orcidKim, Gunwoo [0000-0001-9153-3141]
dc.contributor.orcidGarcia-Araez, Nuria [0000-0001-9095-2379]
dc.contributor.orcidGrey, Clare [0000-0001-5572-192X]
dc.identifier.eissn1521-3773
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (696656)
pubs.funder-project-idEC FP7 FET FLAGSHIP (604391)
pubs.funder-project-idEPSRC (EP/K01711X/1)
pubs.funder-project-idEuropean Research Council (247411)
pubs.funder-project-idUnited States Department of Energy (DOE) (via University of California) (7057154)
pubs.funder-project-idUNIVERSITY OF OXFORD (FB EPSRC) (EP/L019469/1)
pubs.funder-project-idTechnology Strategy Board (132220)
pubs.funder-project-idEPSRC (via University of Oxford) (EP/M009521/1)
pubs.funder-project-idEPSRC (EP/K017144/1)


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International