Show simple item record

dc.contributor.authorGaultois, Michaelen
dc.contributor.authorDunstan, Matthewen
dc.contributor.authorBateson, AWen
dc.contributor.authorChan, MSCen
dc.contributor.authorGrey, Clareen
dc.date.accessioned2018-06-27T13:33:26Z
dc.date.available2018-06-27T13:33:26Z
dc.date.issued2018-04-24en
dc.identifier.issn0897-4756
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/277560
dc.description.abstractCarbon capture and storage (CCS) is increasingly being accepted as a necessary component of any effort to mitigate the impact of anthropogenic climate change, as it is both a relatively mature and easily implemented technology. High-temperature CO2 absorption looping is a promising process that offers a much lower energy penalty than the current state of the art amine scrubbing techniques, but more effective materials are required for widespread implementation. This work describes the experimental characterisation and CO2 absorption properties of several new ternary transition metal oxides predicted by high-throughput DFT screening. One material reported here, Li5SbO5, displays reversible CO2 sorption, and maintains 72 % of its theoretical capacity out to 25 cycles. The results in this work are used to discuss major influences on CO2 absorption capacity and rate, including the role of the crystal structure, the transition metal, the alkali or alkaline earth metal, and the competing roles of thermodynamics and kinetics. Notably, this work shows the extent and rate to which ternary metal oxides carbonate is driven primarily by the identity of the alkali or alkaline earth ion and the nature of the crystal structure, whereas the identity of the transition ion carries little influence in the systems studied here.
dc.publisherAmerican Chemical Society
dc.titleScreening and Characterization of Ternary Oxides for High-Temperature Carbon Captureen
dc.typeArticle
prism.endingPage2543
prism.issueIdentifier8en
prism.publicationDate2018en
prism.publicationNameChemistry of Materialsen
prism.startingPage2535
prism.volume30en
dc.identifier.doi10.17863/CAM.24876
dcterms.dateAccepted2018-03-29en
rioxxterms.versionofrecord10.1021/acs.chemmater.7b04679en
rioxxterms.versionAM*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2018-04-24en
dc.contributor.orcidGaultois, Michael [0000-0003-2172-2507]
dc.contributor.orcidDunstan, Matthew Terence [0000-0002-6319-4231]
dc.contributor.orcidChan, MSC [0000-0002-3362-6662]
dc.contributor.orcidGrey, Clare [0000-0001-5572-192X]
dc.identifier.eissn1520-5002
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/K030132/1)
pubs.funder-project-idEuropean Commission (659764)
rioxxterms.freetoread.startdate2019-03-29


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record