Repository logo
 

Free energy analysis of cell spreading.


Type

Article

Change log

Authors

McEvoy, Eóin 
Deshpande, Vikram S 
McGarry, Patrick 

Abstract

In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing cytoskeletal free energy and increasing passive elastic free energy.

Description

Keywords

Cell Adhesion, Cell Spreading, Cytoskeletal Free Energy, Finite Element, Thermodynamically Consistent Active Model, Cell Adhesion, Cells, Cultured, Cytoskeletal Proteins, Integrins, Models, Biological, Stress Fibers, Thermodynamics

Journal Title

Journal of the Mechanical Behavior of Biomedical Materials

Conference Name

Journal ISSN

1751-6161
1878-0180

Volume Title

74

Publisher

Elsevier
Sponsorship
unding support was provided by the Irish Research Council (IRC) postgraduate scholarship (GOIPG/2015/2954), the National University of Ireland Galway Hardiman scholarship, and Science Foundation Ireland (SFI-12/IP/1723).