Repository logo
 

Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials.

Published version
Peer-reviewed

Change log

Authors

Passos Bastos, Carlos 
Rodrigues Faria, Nuno 
Bondarenko, Olesja M 
Kahru, Anne 

Abstract

Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm, and mean zeta potential of -40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically-applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 hours. We provide a practical formulation for topical copper - based antimicrobial therapy. Further studies, especially in vivo, are merited.

Description

Keywords

Journal Title

Nanoscale research letters

Conference Name

Journal ISSN

1931-7573
1556-276X

Volume Title

13

Publisher

Springer
Sponsorship
MRC (MR/R005699/1)