Repository logo
 

Self-sculpting of a dissolvable body due to gravitational convection

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Davies Wykes, MS 
Huang, JM 
Hajjar, GA 
Ristroph, L 

Abstract

© 2018 American Physical Society. Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.

Description

Keywords

4012 Fluid Mechanics and Thermal Engineering, 40 Engineering

Journal Title

Physical Review Fluids

Conference Name

Journal ISSN

2469-990X
2469-990X

Volume Title

3

Publisher

American Physical Society (APS)