Dynamic Prediction of Survival in Cystic Fibrosis: A Landmarking Analysis Using UK Patient Registry Data.
View / Open Files
Authors
Keogh, Ruth H
Seaman, Shaun R
Barrett, Jessica K
Taylor-Robinson, David
Szczesniak, Rhonda
Publication Date
2019-01Journal Title
Epidemiology
ISSN
1044-3983
Publisher
Ovid Technologies (Wolters Kluwer Health)
Volume
30
Issue
1
Pages
29-37
Language
eng
Type
Article
Physical Medium
Print
Metadata
Show full item recordCitation
Keogh, R. H., Seaman, S. R., Barrett, J. K., Taylor-Robinson, D., & Szczesniak, R. (2019). Dynamic Prediction of Survival in Cystic Fibrosis: A Landmarking Analysis Using UK Patient Registry Data.. Epidemiology, 30 (1), 29-37. https://doi.org/10.1097/EDE.0000000000000920
Abstract
BACKGROUND: Cystic fibrosis (CF) is an inherited, chronic, progressive condition affecting around 10,000 individuals in the United Kingdom and over 70,000 worldwide. Survival in CF has improved considerably over recent decades, and it is important to provide up-to-date information on patient prognosis. METHODS: The UK Cystic Fibrosis Registry is a secure centralized database, which collects annual data on almost all CF patients in the United Kingdom. Data from 43,592 annual records from 2005 to 2015 on 6181 individuals were used to develop a dynamic survival prediction model that provides personalized estimates of survival probabilities given a patient's current health status using 16 predictors. We developed the model using the landmarking approach, giving predicted survival curves up to 10 years from 18 to 50 years of age. We compared several models using cross-validation. RESULTS: The final model has good discrimination (C-indexes: 0.873, 0.843, and 0.804 for 2-, 5-, and 10-year survival prediction) and low prediction error (Brier scores: 0.036, 0.076, and 0.133). It identifies individuals at low and high risk of short- and long-term mortality based on their current status. For patients 20 years of age during 2013-2015, for example, over 80% had a greater than 95% probability of 2-year survival and 40% were predicted to survive 10 years or more. CONCLUSIONS: Dynamic personalized prediction models can guide treatment decisions and provide personalized information for patients. Our application illustrates the utility of the landmarking approach for making the best use of longitudinal and survival data and shows how models can be defined and compared in terms of predictive performance.
Keywords
Adult, Cohort Studies, Cystic Fibrosis, Female, Humans, Male, Middle Aged, Models, Statistical, Probability, Prognosis, Registries, United Kingdom
Sponsorship
US NIH Grant K25 HL125954
Funder references
MRC (unknown)
Medical Research Council (MR/L003120/1)
British Heart Foundation (None)
Identifiers
External DOI: https://doi.org/10.1097/EDE.0000000000000920
This record's URL: https://www.repository.cam.ac.uk/handle/1810/279933
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk