Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes
View / Open Files
Authors
Jessl, S
Beesley, D
Engelke, S
Valentine, CJ
Stallard, JC
Fleck, N
Ahmad, S
Cole, MT
De Volder, M
Publication Date
2018Journal Title
Materials Science and Engineering A
ISSN
0921-5093
Publisher
Elsevier BV
Volume
735
Pages
269-274
Type
Article
Metadata
Show full item recordCitation
Jessl, S., Beesley, D., Engelke, S., Valentine, C., Stallard, J., Fleck, N., Ahmad, S., et al. (2018). Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes. Materials Science and Engineering A, 735 269-274. https://doi.org/10.1016/j.msea.2018.08.033
Abstract
Flexible electronics are being pursued as replacements for rigid consumer electronic products such as smartphones and tablets, as well as for wearable electronics, implantable medical devices, and RFIDs. Such devices require flexible batteries with electrodes that maintain their electro-chemical performance during multiple bending cycles. These electrodes typically consist of an active battery material blend with a conductive additive and a binder. Whilst the choice of active battery material is typically dictated by the desired battery power and energy requirements, there is more freedom in changing the conductive additives to cope with strain induced during the bending of flexible batteries. Here we compare the mechanical and electrical properties of free standing cathodes using lithium cobalt oxide (LiCoO2) as the active material and 10 to 20 wt% of amorphous carbon powder (CP) or carbon nanotubes (CNTs) as conductive additives. We found that the CNT based electrodes showed less crack formation during bending and have a Young's modulus up to 30 times higher than CP electrodes (10 wt% loading). Further, the electrical resistance of pristine CNT electrodes is 10 times lower than CP electrodes (20 wt% loading). This difference further increases to a 28 times lower resistance for CNT films after 2000 bending cycles. These superior properties of CNT films are reflected in the electrochemical tests, which show that after bending, only the electrodes with 20 wt% of CNTs remain operational. This study therefore highlights the importance of the conductive additives for developing reliable flexible batteries.
Keywords
Carbon nanotubes, Flexible electrodes, Flexible batteries, Conductive additives, Resistance measurements
Sponsorship
EPSRC (1614574)
European Research Council (337739)
EPSRC (1577777)
EPSRC (1470335)
Engineering and Physical Sciences Research Council (EP/L016087/1)
Engineering and Physical Sciences Research Council (EP/L015889/1)
Identifiers
External DOI: https://doi.org/10.1016/j.msea.2018.08.033
This record's URL: https://www.repository.cam.ac.uk/handle/1810/279934
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk