Repository logo
 

Hamiltonian Transformation to Compute Thermo-osmotic Forces.

Accepted version
Peer-reviewed

Change log

Authors

Ganti, Raman 
Liu, Yawei 

Abstract

If a thermal gradient is applied along a fluid-solid interface, the fluid experiences a thermo-osmotic force. In the steady state, this force is balanced by the gradient of the shear stress. Surprisingly, there appears to be no unique microscopic expression that can be used for computing the magnitude of the thermo-osmotic force. Here we report how, by treating the mass M of the fluid particles as a tensor in the Hamiltonian, we can eliminate the balancing shear force in a nonequilibrium simulation and therefore compute the thermo-osmotic force at simple solid-fluid interfaces. We compare the nonequilibrium force measurement with estimates of the thermo-osmotic force based on computing gradients of the stress tensor. We find that the thermo-osmotic force as measured in our simulations cannot be derived from the most common microscopic definitions of the stress tensor.

Description

Keywords

0915 Interdisciplinary Engineering

Journal Title

Phys Rev Lett

Conference Name

Journal ISSN

0031-9007
1079-7114

Volume Title

121

Publisher

American Physical Society (APS)
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (674979)