Show simple item record

dc.contributor.authorPeres, Yuvalen
dc.contributor.authorSchapira, Brunoen
dc.contributor.authorSousi, Perlaen
dc.date.accessioned2018-09-10T22:14:04Z
dc.date.available2018-09-10T22:14:04Z
dc.date.issued2016-08en
dc.identifier.issn0246-0203
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/279984
dc.description.abstractSuppose that (X,Y,Z) is a random walk in Z3 that moves in the following way: on the first visit to a vertex only Z changes by ±1 equally likely, while on later visits to the same vertex (X,Y) performs a two-dimensional random walk step. We show that this walk is transient thus answering a question of Benjamini, Kozma and Schapira. One important ingredient of the proof is a dispersion result for martingales.
dc.languageenen
dc.publisherInstitute of Mathematical Statistics
dc.titleMartingale defocusing and transience of a self-interacting random walken
dc.typeArticle
prism.endingPage1022
prism.issueIdentifier3en
prism.publicationDate2016en
prism.publicationNameAnnales de l'Institut Henri Poincaré, Probabilités et Statistiquesen
prism.startingPage1009
prism.volume52en
dc.identifier.doi10.17863/CAM.27350
dcterms.dateAccepted2014-12-19en
rioxxterms.versionofrecord10.1214/14-aihp667en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2016-08en
rioxxterms.typeJournal Article/Reviewen
cam.issuedOnline2016-07-28en
rioxxterms.freetoread.startdate2017-08-31


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record