Cluster phases and bubbly phase separation in active fluids: Reversal of the Ostwald process

Nardini, Cesare 

Thumbnail Image
Change log

It is known that purely repulsive self-propelled colloids can undergo bulk liquid-vapor phase separation. In experiments and large scale simulations, however, more complex steady states are also seen, comprising a dynamic population of dense clusters in a sea of vapor, or dilute bubbles in a liquid. Here we show that these microphase-separated states should emerge generically in active matter, without any need to invoke system-specific details. We give a coarse-grained description of them, and predict transitions between regimes of bulk phase separation and microphase separation. We achieve these results by extending the φ4 field theory of passive phase separation to allow for all local currents that break detailed balance at leading order in the gradient expansion. These local active currents, whose form we show to emerge from coarse-graining of microscopic models, include a mixture of irrotational and rotational contributions, and can be viewed as arising from an effective nonlocal chemical potential. Such contributions influence, and in some parameter ranges reverse, the classical Ostwald process that would normally drive bulk phase separation to completion.

Publication Date
Online Publication Date
Acceptance Date
Journal Title
Physical Review X
Journal ISSN
Volume Title
American Physical Society
European Research Council (740269)
Royal Society (RP170002)
ERC grant agreement number 740269