Show simple item record

dc.contributor.authorTronnolone, Hayden
dc.contributor.authorTam, Alexander
dc.contributor.authorSzenczi, Zoltán
dc.contributor.authorGreen, JEF
dc.contributor.authorBalasuriya, Sanjeeva
dc.contributor.authorTek, Ee Lin
dc.contributor.authorGardner, Jennifer M
dc.contributor.authorSundstrom, Joanna F
dc.contributor.authorJiranek, Vladimir
dc.contributor.authorOliver, Stephen
dc.contributor.authorBinder, Benjamin J
dc.date.accessioned2018-09-20T12:05:02Z
dc.date.available2018-09-20T12:05:02Z
dc.date.issued2018-04-16
dc.identifier.issn2045-2322
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/280489
dc.description.abstractThe emergence of diffusion-limited growth (DLG) within a microbial colony on a solid substrate is studied using a combination of mathematical modelling and experiments. Using an agent-based model of the interaction between microbial cells and a diffusing nutrient, it is shown that growth directed towards a nutrient source may be used as an indicator that DLG is influencing the colony morphology. A continuous reaction-diffusion model for microbial growth is employed to identify the parameter regime in which DLG is expected to arise. Comparisons between the model and experimental data are used to argue that the bacterium Bacillus subtilis can undergo DLG, while the yeast Saccharomyces cerevisiae cannot, and thus the non-uniform growth exhibited by this yeast must be caused by the pseudohyphal growth mode rather than limited nutrient availability. Experiments testing directly for DLG features in yeast colonies are used to confirm this hypothesis.
dc.format.mediumElectronic
dc.languageeng
dc.publisherSpringer Science and Business Media LLC
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBacillus subtilis
dc.subjectSaccharomyces cerevisiae
dc.subjectDiffusion
dc.subjectAlgorithms
dc.subjectModels, Biological
dc.subjectComputer Simulation
dc.titleDiffusion-Limited Growth of Microbial Colonies.
dc.typeArticle
prism.issueIdentifier1
prism.publicationDate2018
prism.publicationNameSci Rep
prism.startingPage5992
prism.volume8
dc.identifier.doi10.17863/CAM.27860
dcterms.dateAccepted2018-03-14
rioxxterms.versionofrecord10.1038/s41598-018-23649-z
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-04-16
dc.contributor.orcidTronnolone, Hayden [0000-0003-4532-2030]
dc.contributor.orcidTam, Alexander [0000-0003-3565-1068]
dc.contributor.orcidGreen, JEF [0000-0001-5061-9563]
dc.contributor.orcidBalasuriya, Sanjeeva [0000-0002-3261-7940]
dc.contributor.orcidTek, Ee Lin [0000-0001-7441-6840]
dc.contributor.orcidGardner, Jennifer M [0000-0002-4215-955X]
dc.contributor.orcidSundstrom, Joanna F [0000-0002-4898-3101]
dc.contributor.orcidJiranek, Vladimir [0000-0002-9775-8963]
dc.contributor.orcidOliver, Stephen [0000-0003-3410-6439]
dc.contributor.orcidBinder, Benjamin J [0000-0002-1812-6715]
dc.identifier.eissn2045-2322
rioxxterms.typeJournal Article/Review
cam.issuedOnline2018-04-16


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International