Show simple item record

dc.contributor.authorDervan, Ruadhaí
dc.contributor.authorSzékelyhidi, Gábor
dc.date.accessioned2018-09-20T12:05:31Z
dc.date.available2018-09-20T12:05:31Z
dc.date.issued2020-09-01
dc.identifier.issn0022-040X
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/280503
dc.description.abstractWe prove that on Fano manifolds, the Kähler-Ricci flow produces a "most destabilising" degeneration, with respect to a new stability notion related to the H-functional. This answers questions of Chen-Sun-Wang and He. We give two applications of this result. Firstly, we give a purely algebro-geometric formula for the supremum of Perelman's μ-functional on Fano manifolds, resolving a conjecture of Tian-Zhang-Zhang-Zhu as a special case. Secondly, we use this to prove that if a Fano manifold admits a Kähler-Ricci soliton, then the Kähler-Ricci flow converges to it modulo the action of automorphisms, with any initial metric. This extends work of Tian-Zhu and Tian-Zhang-Zhang-Zhu, where either the manifold was assumed to admit a Kähler-Einstein metric, or the initial metric of the flow was assumed to be invariant under a maximal compact group of automorphism.
dc.publisherInternational Press of Boston
dc.titleThe Kähler–Ricci flow and optimal degenerations
dc.typeArticle
prism.issueIdentifier1
prism.publicationDate2020
prism.publicationNameJournal of Differential Geometry
prism.volume116
dc.identifier.doi10.17863/CAM.27873
dcterms.dateAccepted2018-06-21
rioxxterms.versionofrecord10.4310/jdg/1599271255
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2020-09-01
rioxxterms.typeJournal Article/Review
cam.issuedOnline2020-09-05
rioxxterms.freetoread.startdate2019-09-14


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record