A high sensitivity, low noise and high spatial resolution multi-band infrared reflectography camera for the study of paintings and works on paper
View / Open Files
Authors
Delaney, JK
Trumpy, G
Didier, M
Ricciardi, P
Dooley, KA
Publication Date
2017Journal Title
Heritage Science
ISSN
2050-7445
Publisher
Springer Science and Business Media LLC
Volume
5
Issue
1
Type
Article
Metadata
Show full item recordCitation
Delaney, J., Trumpy, G., Didier, M., Ricciardi, P., & Dooley, K. (2017). A high sensitivity, low noise and high spatial resolution multi-band infrared reflectography camera for the study of paintings and works on paper. Heritage Science, 5 (1) https://doi.org/10.1186/s40494-017-0146-1
Abstract
Infrared reflectography (IRR) remains an important method to visualize underdrawing and compositional changes in paintings. Older IRR camera systems are being replaced with near-infrared cameras consisting of room temperature infrared detector arrays made out of indium gallium arsenide (InGaAs) that operate over the spectral range of ~900 to 1700 nm. Two camera types are becoming prevalent. The first is staring array infrared cameras having 0.25–1 Megapixels where the camera or painting is moved to acquire tens of individual images that are later mosaicked together to create the infrared reflectogram. The second camera type is scanning back cameras in which a small InGaAs array (linear or area array) is mechanically scanned over a large image formed by the camera lens to create the reflectogram, typically 16 Megapixels. Both systems have advantages and disadvantages. The staring IR array cameras offer more flexible collection formats, provide live images, and allow for the use of spectral bandpass filters that can provide reflectograms with better contrast in some cases. They do require a mechanical system for moving the camera or the artwork and post-capture image mosaicking. Scanning back cameras eliminate or reduce the amount of mosaicking and movement of the camera, however the need to minimize light exposure to the artwork requires short integration times, and thus limits the use of spectral bandpass filters. In general, InGaAs cameras are not sensitive in the 1700 to ~2300 nm spectral region, which has been identified in prior studies as useful for examining paintings with copper green pigments or thick lead white paints. Prior studies using cameras with sensitivity from 1000 to 2500 nm have found in general the performance at wavelengths longer than 1700 nm degraded relative to the performance at shorter wavelengths. Thus, there is interest in a camera system having improved performance out to 2500 nm that can utilize spectral bandpass filters.
Identifiers
External DOI: https://doi.org/10.1186/s40494-017-0146-1
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283010
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk