Li and U Isotopes as a Potential Tool for Monitoring Active Layer Deepening in Permafrost Dominated Catchments
View / Open Files
Publication Date
2018-07-26Journal Title
Frontiers in Earth Science
ISSN
1863-4621
Publisher
Frontiers Media SA
Volume
6
Type
Article
Metadata
Show full item recordCitation
Hindshaw, R., Aciego, S., & Tipper, E. (2018). Li and U Isotopes as a Potential Tool for Monitoring Active Layer Deepening in Permafrost Dominated Catchments. Frontiers in Earth Science, 6 https://doi.org/10.3389/feart.2018.00102
Abstract
Permafrost in the Arctic is decreasing in extent and the depth of the seasonally thawed layer, the active layer, is increasing. Increased exposure to water is increasing fluxes of organic and inorganic solutes with potential impacts for the global carbon cycle and downstream ecosystems. Understanding the relationship between solute release and active layer depth will be critical for modeling environmental impact, especially in inaccessible regions where there is a lack of data. In this study, we focus on the potential for the isotopes of lithium (Li) and uranium (U) to track active layer extent in two permafrost-dominated catchments in Svalbard: one glaciated and one unglaciated. These isotope systems can be measured to a much higher precision than concentration measurements and act as sensitive tracers of environmental change. The extent of Li isotope fractionation provides information on the balance between dissolution of primary phases and formation of secondary phases, such as clay minerals and oxides. The U activity ratio provides information on water-rock interaction times and physical properties. We observe contrasting behavior between the two catchments. The highest U activity ratios and Li isotope values (those most distinct from bedrock) are observed in summer in the unglaciated catchment, when the active layer depth is expected to be at its maximum extent, whereas negligible seasonal variation and the lowest values are observed in the glaciated catchment. We therefore propose that the extent of solute acquisition is directly linked to the active layer depth, which is restricted in the glaciated catchment due to a layer of “dead ice” underneath the glacial outwash plain, and could therefore provide a valuable tool to assess changes in active layer depth at catchment scales.
Sponsorship
This project was funded by a Swiss National Science Foundation fellowship for prospective researchers (PBEZP2-137335), a Marie Curie Intra-European Fellowship (PIEF-GA-2012-331501), and NERC Standard Grant NE/M001865/1. Fieldwork was supported by an Arctic Field Grant (219165/E10, The Research Council of Norway).
Funder references
Natural Environment Research Council (NE/M001865/1)
Identifiers
External DOI: https://doi.org/10.3389/feart.2018.00102
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283061
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.