Optimal gate commutated thyristor design for bi-mode gate commutated thyristors underpinning high, temperature independent, current controllability
View / Open Files
Authors
Vemulapati, U
Badstuebner, U
Wikstroem, T
Stiasny, T
Publication Date
2018Journal Title
IEEE Electron Device Letters
ISSN
0741-3106
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Volume
39
Issue
9
Pages
1342-1345
Type
Article
Metadata
Show full item recordCitation
Lophitis, N., Antoniou, M., Vemulapati, U., Vobecky, J., Badstuebner, U., Wikstroem, T., Stiasny, T., et al. (2018). Optimal gate commutated thyristor design for bi-mode gate commutated thyristors underpinning high, temperature independent, current controllability. IEEE Electron Device Letters, 39 (9), 1342-1345. https://doi.org/10.1109/LED.2018.2847050
Abstract
The Bi-mode Gate Commutated Thyristor (BGCT) is an advanced reverse conducting device aiming high power applications. Due to the high degree of interdigitation of diode parts and Gate Commutated Thyristor (GCT) parts, it is necessary to investigate how to best separate the two and at the same time, how to maximise the individual power handling capability. This work underpins the latter, for the GCT part. In achieving that, this letter details the optimisation direction, identifies the design parameters that influence the Maximum Controllable Current (MCC) and thereafter introduces a new design attribute, the “p-zone”. This new design not only improves the MCC at high temperature, but also at low temperature, yielding temperature independent current handling capability and at least 1000 A, or 23.5 % of improvement compared to the state-of-the-art. As a result, the proposed design constitutes an enabler for optimally designed bi-mode devices rated at least 5000 A for applications with the highest power requirement.
Identifiers
External DOI: https://doi.org/10.1109/LED.2018.2847050
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283462
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.