Mean-field Matsubara dynamics: analysis of path-integral curvature effects in rovibrational spectra
Authors
Change log
Abstract
It was shown recently that smooth and continuous ‘Matsubara’ phase-space loops follow a quantum-Boltzmann-conserving classical dynamics when decoupled from non-smooth distributions, which was suggested as the reason that many dynamical observables appear to involve a mixture of classical dynamics and quantum Boltz- mann statistics. Here we derive a mean-field version of this ‘Matsubara dynamics’ which sufficiently mitigates its serious phase problem to permit numerical tests on a two-dimensional ‘champagne-bottle’ model of a rotating OH bond. The Matsubara- dynamics rovibrational spectra are found to converge towards close agreement with the exact quantum results at all temperatures tested (200–800 K), the only significant discrepancies being a temperature-independent 22 cm−1 blue-shift in the position of the vibrational peak, and a slight broadening in its lineshape. These results are compared with centroid molecular dynamics (CMD) to assess the importance of non- centroid fluctuations. Above 250 K, only the lowest-frequency non-centroid modes are needed to correct small CMD red-shifts in the vibrational peak; below 250 K, more non-centroid modes are needed to correct large CMD red-shifts and broaden- ing. The transition between these ‘shallow curvature’ and ‘deep curvature’ regimes happens when imaginary-time Feynman paths become able to lower their actions by cutting through the curved potential surface, giving rise to artificial instantons in CMD.
Publication Date
Online Publication Date
Acceptance Date
Keywords
Journal Title
Journal ISSN
1089-7690