The Dynamical Regime of Sensory Cortex: Stable Dynamics around a Single Stimulus-Tuned Attractor Account for Patterns of Noise Variability.
View / Open Files
Publication Date
2018-05-16Journal Title
Neuron
ISSN
0896-6273
Publisher
Elsevier BV
Volume
98
Issue
4
Pages
846-860.e5
Language
eng
Type
Article
Physical Medium
Print
Metadata
Show full item recordCitation
Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M., & Miller, K. D. (2018). The Dynamical Regime of Sensory Cortex: Stable Dynamics around a Single Stimulus-Tuned Attractor Account for Patterns of Noise Variability.. Neuron, 98 (4), 846-860.e5. https://doi.org/10.1016/j.neuron.2018.04.017
Abstract
Correlated variability in cortical activity is ubiquitously quenched following stimulus onset, in a stimulus-dependent manner. These modulations have been attributed to circuit dynamics involving either multiple stable states ("attractors") or chaotic activity. Here we show that a qualitatively different dynamical regime, involving fluctuations about a single, stimulus-driven attractor in a loosely balanced excitatory-inhibitory network (the stochastic "stabilized supralinear network"), best explains these modulations. Given the supralinear input/output functions of cortical neurons, increased stimulus drive strengthens effective network connectivity. This shifts the balance from interactions that amplify variability to suppressive inhibitory feedback, quenching correlated variability around more strongly driven steady states. Comparing to previously published and original data analyses, we show that this mechanism, unlike previous proposals, uniquely accounts for the spatial patterns and fast temporal dynamics of variability suppression. Specifying the cortical operating regime is key to understanding the computations underlying perception.
Keywords
MT, V1, circuit dynamics, cortical variability, noise correlations, theoretical neuroscience, variability quenching, Animals, Macaca, Neural Inhibition, Neural Networks, Computer, Neurons, Nonlinear Dynamics, Occipital Lobe, Visual Cortex
Sponsorship
Wellcome Trust (202111/Z/16/Z)
Wellcome Trust (095621/Z/11/Z)
Identifiers
External DOI: https://doi.org/10.1016/j.neuron.2018.04.017
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283508
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk