Revisiting hypervelocity stars after Gaia DR2
Authors
Boubert, Douglas
Guillochon, James
Hawkins, Keith
Ginsburg, Idan
Evans, N Wyn
Strader, Jay
Publication Date
2018Journal Title
Monthly Notices of the Royal Astronomical Society
ISSN
1365-2966
Publisher
Oxford University Press
Type
Article
Metadata
Show full item recordCitation
Boubert, D., Guillochon, J., Hawkins, K., Ginsburg, I., Evans, N. W., & Strader, J. (2018). Revisiting hypervelocity stars after Gaia DR2. Monthly Notices of the Royal Astronomical Society https://doi.org/10.1093/mnras/sty1601
Abstract
Hypervelocity stars are intriguing rare objects traveling at speeds large enough to be unbound from the Milky Way. Several mechanisms have been proposed for producing them, including the interaction of the Galaxy’s super-massive black hole (SMBH) with a binary; rapid mass-loss from a companion to a star in a short-period binary; the tidal disruption of an infalling galaxy and finally ejection from the Large Magellanic Cloud. While previously discovered high-velocity early-type stars are thought to be the result of an interaction with the SMBH, the origin of high-velocity late type stars is ambiguous. The second data release of Gaia (DR2) enables a unique opportunity to resolve this ambiguity and determine whether any late-type candidates are truly unbound from the Milky Way. In this paper, we utilize the new proper motion and velocity information available from DR2 to re-evaluate a collection of historical data compiled on the newly-created Open Fast Stars Catalog. We find that almost all previously-known high-velocity late-type stars are most likely bound to the Milky Way. Only one late-type object (LAMOST J115209.12+120258.0) is unbound from the Galaxy. Performing integrations of orbital histories, we find that this object cannot have been ejected from the Galactic centre and thus may be either debris from the disruption of a satellite galaxy or a disc runaway.
Keywords
stars: kinematics and dynamics, binaries: general
Sponsorship
D. Boubert thanks the UK Science and Technology Facilities Council for supporting his PhD. K. Hawkins thanks the Simons Society of Fellows and the Flatiron Institute Center for Computational Astrophysics. I. Ginsburg was supported in part by Harvard University funds and the Institute for Theory and Computation. J.S. acknowledges support from the Packard Foundation. This work has made use of data from the European Space Agency (ESA) mission Gaia(https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Funder references
Science and Technology Facilities Council (ST/N000927/1)
Embargo Lift Date
2100-01-01
Identifiers
External DOI: https://doi.org/10.1093/mnras/sty1601
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283553
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk