Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets
View / Open Files
Publication Date
2018Journal Title
Monthly Notices of the Royal Astronomical Society
ISSN
1365-2966
Publisher
Oxford University Press
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Marino, S., Bonsor-Matthews, A., Wyatt, M., & Kral, Q. (2018). Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets. Monthly Notices of the Royal Astronomical Society https://doi.org/10.1093/mnras/sty1475
Abstract
Exocomets scattered by planets have been invoked to explain observations in multiple contexts, including the frequently found near- and mid-infrared excess around nearby stars arising from exozodiacal dust. Here we investigate how the process of inward scattering of comets originating in an outer belt, is affected by the architecture of a planetary system, to determine whether this could lead to observable exozodi levels or deliver volatiles to inner planets. Using N-body simulations, we model systems with different planet mass and orbital spacing distributions in the 1-50 AU region. We find that tightly packed (Δap < 20RH, m) low mass planets are the most efficient at delivering material to exozodi regions (5-7% of scattered exocomets end up within 0.5 AU at some point), although the exozodi levels do not vary by more than a factor of ∼7 for the architectures studied here. We suggest that emission from scattered dusty material in between the planets could provide a potential test for this delivery mechanism. We show that the surface density of scattered material can vary by two orders of magnitude (being highest for systems of low mass planets with medium spacing), whilst the exozodi delivery rate stays roughly constant, and that future instruments such as JWST could detect it. In fact for η Corvi, the current Herschel upper limit rules our the scattering scenario by a chain of ≲30 M⊕ planets. Finally, we show that exocomets could be efficient at delivering cometary material to inner planets (0.1-1% of scattered comets are accreted per inner planet). Overall, the best systems at delivering comets to inner planets are the ones that have low mass outer planets and medium spacing (∼20RH, m).
Keywords
circumstellar matter, planetary systems, zodiacal dust, planets and satellites: dynamical evolution and stability, methods: numerical, planets and satellites: general
Sponsorship
MCW and QK acknowledge funding from STFC via the Institute of Astronomy, Cambridge Consolidated Grant. AB acknowledges Royal Society via a Dorothy Hodgkin Fellowship.
Funder references
Royal Society (DH150088)
Science and Technology Facilities Council (ST/N000927/1)
Identifiers
External DOI: https://doi.org/10.1093/mnras/sty1475
This record's URL: https://www.repository.cam.ac.uk/handle/1810/283598
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk