Can nascent soot particles burn from the inside?
View / Open Files
Publication Date
2016Journal Title
Carbon
ISSN
0008-6223
Publisher
Elsevier BV
Volume
109
Pages
608-615
Type
Article
Metadata
Show full item recordCitation
Grančič, P., Martin, J., Chen, D., Mosbach, S., & Kraft, M. (2016). Can nascent soot particles burn from the inside?. Carbon, 109 608-615. https://doi.org/10.1016/j.carbon.2016.08.025
Abstract
© 2016 The trajectories of a single nitrogen molecule resulting from a series of collisions with coronene molecular clusters of varying size are determined numerically by means of classical molecular dynamics simulations at two system temperatures, corresponding to the clusters being in solid and liquid state. The observed bimodality of the residence time distributions that corresponds to a combination of specular and diffuse molecular scattering tends to disappear with increasing temperature due to the more rapid rearrangements of the coronene cluster constituent molecules in the liquid state. The mean residence time decreases with increasing system temperature and appears to be independent of the coronene cluster size within the cluster size-range considered here. The recorded trajectories of the nitrogen probe are relatively tortuous, on average one order of magnitude longer than the shortest path connecting the impact and desorption points. The vast majority of the sites visited during the nitrogen molecule residence period correspond to the atoms at the edge of coronene molecules, mainly hydrogens. The intermolecular cohesive forces between the molecules cause that the coronene clusters are impenetrable by the nitrogen probe at temperatures below their thermal dissociation point.
Sponsorship
This project was partly funded by the National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.
Identifiers
External DOI: https://doi.org/10.1016/j.carbon.2016.08.025
This record's URL: https://www.repository.cam.ac.uk/handle/1810/284147
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.