Computational Models for Trapping Ebola Virus Using Engineered Bacteria
View / Open Files
Authors
Martins, DP
Barros, M
Pierobon, M
Kandhavelu, M
Lio, P
Balasubramaniam, S
Publication Date
2018Journal Title
IEEE/ACM Transactions on Computational Biology and Bioinformatics
ISSN
1545-5963
Publisher
IEEE
Volume
15
Issue
6
Type
Article
Metadata
Show full item recordCitation
Martins, D., Barros, M., Pierobon, M., Kandhavelu, M., Lio, P., & Balasubramaniam, S. (2018). Computational Models for Trapping Ebola Virus Using Engineered Bacteria. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15 (6) https://doi.org/10.1109/TCBB.2018.2836430
Abstract
IEEE The outbreak of Ebola virus in recent years has resulted in numerous research initiatives to seek new solutions to contain the virus. A number of approaches that have been investigated include new vaccines to boost the immune system. An alternative post-exposure treatment is presented in this paper. The proposed approach for clearing Ebola virus can be developed through a microfluidic attenuator, which contains the engineered bacteria that traps Ebola flowing through the blood onto its membrane. The paper presents the analysis of the chemical binding force between the virus and a genetically engineered bacterium considering the opposing forces acting on the attachment point, including hydrodynamic tension and drag force. To test the efficacy of the technique, simulations of bacterial motility within a confined area to trap the virus were performed. More than 60% of the displaced virus could be collected within 15 minutes. While the proposed approach currently focuses on in vitro environments for trapping the virus, the system can be further developed into the future for treatment whereby blood can be cycled out of the body into a microfluidic device that contains the engineered bacteria to trap viruses.
Keywords
genetically engineered bacteria, Ebola virus, virus ecological trap
Sponsorship
This work was partially funded by 1) Science Foundation Ireland via the CONNECT research centre (grant no. 13/RC/2077), 2) via the FiDiPro program of Academy of Finland (Nano communication Networks), 2012- 2016, 3) Academy of Finland Research Fellow grant, and 4) the US National Science Foundation through grant MCB-1449014.
Identifiers
External DOI: https://doi.org/10.1109/TCBB.2018.2836430
This record's URL: https://www.repository.cam.ac.uk/handle/1810/284377
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk