Show simple item record

dc.contributor.authorWright, S Joseph
dc.contributor.authorTurner, Benjamin L
dc.contributor.authorYavitt, Joseph B
dc.contributor.authorHarms, Kyle E
dc.contributor.authorKaspari, Michael
dc.contributor.authorTanner, Edmund
dc.contributor.authorBujan, Jelena
dc.contributor.authorGriffin, Eric A
dc.contributor.authorMayor, Jordan R
dc.contributor.authorPasquini, Sarah C
dc.contributor.authorSheldrake, Merlin
dc.contributor.authorGarcia, Milton N
dc.date.accessioned2018-11-01T14:03:40Z
dc.date.available2018-11-01T14:03:40Z
dc.date.issued2018-05
dc.identifier.issn0012-9658
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/284525
dc.description.abstractWe present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected.
dc.format.mediumPrint-Electronic
dc.languageeng
dc.publisherWiley
dc.subjectTrees
dc.subjectNitrogen
dc.subjectPhosphorus
dc.subjectSoil
dc.subjectTropical Climate
dc.subjectPanama
dc.subjectForests
dc.titlePlant responses to fertilization experiments in lowland, species-rich, tropical forests.
dc.typeArticle
prism.endingPage1138
prism.issueIdentifier5
prism.publicationDate2018
prism.publicationNameEcology
prism.startingPage1129
prism.volume99
dc.identifier.doi10.17863/CAM.31900
dcterms.dateAccepted2018-01-22
rioxxterms.versionofrecord10.1002/ecy.2193
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-05
dc.contributor.orcidTanner, Edmund [0000-0002-4961-9993]
dc.identifier.eissn1939-9170
rioxxterms.typeJournal Article/Review
cam.issuedOnline2018-03-26
rioxxterms.freetoread.startdate2019-05-31


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record