Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model
View / Open Files
Publication Date
2018Journal Title
Physics of Fluids
ISSN
1070-6631
Publisher
AIP Publishing
Volume
30
Issue
8
Type
Article
Metadata
Show full item recordCitation
Vreugdenhil, C., & Taylor, J. (2018). Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Physics of Fluids, 30 (8) https://doi.org/10.1063/1.5037039
Abstract
The anisotropic minimum-dissipation (AMD) model for large-eddy simulation (LES) has been recently developed, and here the model performance is examined in strat- ified plane Couette flow. To our knowledge this is the first use of the AMD model for resolved LES of stratified wall-bounded flow. A comparison with previously pub- lished direct numerical simulations (DNS) provides insight into model and grid re- quirements. Prandtl numbers of P r = 0.7 − 70 and a range of Richardson numbers show that the AMD LES performs well even with a strong stabilising buoyancy flux. We identify three new requirements for accurate LES of stratified wall-bounded flow. First, the LES must resolve the turbulent structures at the edge of the viscous sublayer in order to satisfy the Obukov length scale condition, L+s > 200. Other- wise the LES solution may laminarise where the DNS solution remains turbulent. Second, the LES must have enough vertical grid resolution within the viscous and diffusive sublayers to resolve the wall fluxes. Third, the grid must be reasonably isotropic (vertical-to-horizontal grid aspect ratio > 0.25) at the edge of the sublayer and through the turbulent interior for the AMD LES to correctly simulate the scalar flux. When these model requirements are fulfilled the AMD LES performs very well, producing vertical mean profiles, friction Reynolds number and Nusselt number con- sistent with DNS solutions at significantly higher grid resolution.
Sponsorship
Natural Environment Research Council (NE/N009746/1)
Identifiers
External DOI: https://doi.org/10.1063/1.5037039
This record's URL: https://www.repository.cam.ac.uk/handle/1810/285031
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk