Fully statistical neural belief tracking
dc.contributor.author | Mrkšić, N | en |
dc.contributor.author | Vulić, I | en |
dc.date.accessioned | 2018-11-14T00:31:01Z | |
dc.date.available | 2018-11-14T00:31:01Z | |
dc.date.issued | 2018-01-01 | en |
dc.identifier.isbn | 9781948087346 | en |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/285038 | |
dc.description.abstract | This paper proposes an improvement to the existing data-driven Neural Belief Tracking (NBT) framework for Dialogue State Tracking (DST). The existing NBT model uses a hand-crafted belief state update mechanism which involves an expensive manual retuning step whenever the model is deployed to a new dialogue domain. We show that this update mechanism can be learned jointly with the semantic decoding and context modelling parts of the NBT model, eliminating the last rule-based module from this DST framework. We propose two different statistical update mechanisms and show that dialogue dynamics can be modelled with a very small number of additional model parameters. In our DST evaluation over three languages, we show that this model achieves competitive performance and provides a robust framework for building resource-light DST models. | |
dc.title | Fully statistical neural belief tracking | en |
dc.type | Conference Object | |
prism.endingPage | 113 | |
prism.publicationDate | 2018 | en |
prism.publicationName | ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers) | en |
prism.startingPage | 108 | |
prism.volume | 2 | en |
dc.identifier.doi | 10.17863/CAM.32408 | |
dcterms.dateAccepted | 2018-04-21 | en |
rioxxterms.versionofrecord | 10.18653/v1/p18-2018 | en |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2018-01-01 | en |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en |
pubs.funder-project-id | ECH2020 EUROPEAN RESEARCH COUNCIL (ERC) (648909) | |
rioxxterms.freetoread.startdate | 2019-07-10 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge