Characterisation of InGaN by Photoconductive Atomic Force Microscopy.
View / Open Files
Publication Date
2018-09-21Journal Title
Materials (Basel)
ISSN
1996-1944
Publisher
MDPI AG
Volume
11
Issue
10
Language
eng
Type
Article
Physical Medium
Electronic
Metadata
Show full item recordCitation
Weatherley, T. F., Massabuau, F., Kappers, M., & Oliver, R. (2018). Characterisation of InGaN by Photoconductive Atomic Force Microscopy.. Materials (Basel), 11 (10) https://doi.org/10.3390/ma11101794
Abstract
Nanoscale structure has a large effect on the optoelectronic properties of InGaN, a material vital for energy saving technologies such as light emitting diodes. Photoconductive atomic force microscopy (PC-AFM) provides a new way to investigate this effect. In this study, PC-AFM was used to characterise four thick (∼130 nm) In x Ga 1 - x N films with x = 5%, 9%, 12%, and 15%. Lower photocurrent was observed on elevated ridges around defects (such as V-pits) in the films with x ≤ 12 %. Current-voltage curve analysis using the PC-AFM setup showed that this was due to a higher turn-on voltage on these ridges compared to surrounding material. To further understand this phenomenon, V-pit cross sections from the 9% and 15% films were characterised using transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. This identified a subsurface indium-deficient region surrounding the V-pit in the lower indium content film, which was not present in the 15% sample. Although this cannot directly explain the impact of ridges on turn-on voltage, it is likely to be related. Overall, the data presented here demonstrate the potential of PC-AFM in the field of III-nitride semiconductors.
Sponsorship
European Research Council (279361)
Engineering and Physical Sciences Research Council (EP/M010589/1)
Identifiers
External DOI: https://doi.org/10.3390/ma11101794
This record's URL: https://www.repository.cam.ac.uk/handle/1810/285148
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.