Repository logo
 

Laser-induced incandescence particle image velocimetry (LII-PIV) for two-phase flow velocity measurement

Published version
Peer-reviewed

Type

Article

Change log

Authors

McGrath, D 
Chong, CT 
Mohd Jaafar, MN 
Zhong, H 

Abstract

We demonstrate the use of laser induced incandescence (LII) of submicron tungsten carbide (WC) particles as a method for particle image velocimetry (PIV). The technique allows a single laser to be used for separate measurements of velocity of two phases in a droplet-laden flow. Submicron tungsten carbide (WC) particles are intentionally seeded into a two-phase flow, and heated by a light sheet generated by a double-pulsed PIV laser operating at sufficiently high pulse energy. The small size and large absorption cross-section allows particles to be heated up to several thousand degrees Kelvin to emit strong incandescence signals, whilst the laser-induced temperature increase in liquid droplets/large particles is negligible. The incandescence signal from WC and Mie scattering from droplets/large particles are separately captured by deploying different filters to a PIV camera. The consecutive images of the laser-induced incandescence (LII) are used to determine the velocity field of the gas-phase flow, and those of Mie scatter are used to extract the velocity of droplets/large particles. The proposed technique is demonstrated in an air jet first and compared with the result given by a normal PIV test, which shows that submicron WC particles can accurately follow the gas flow, and that the LII images can be used to perform cross-correlations. We then apply this technique on an ethanol droplet/air jet (non-reacting), demonstrating the resulting slip velocity between two phases. The proposed technique combining PIV and LII with a single laser requires little additional equipment, and is applicable to a much higher droplet/particle density than previously feasible. Finally the possibility of applying this technique to a flame is demonstrated and discussed.

Description

Keywords

4012 Fluid Mechanics and Thermal Engineering, 40 Engineering

Journal Title

Experiments in Fluids

Conference Name

Journal ISSN

0723-4864
1432-1114

Volume Title

59

Publisher

Springer Science and Business Media LLC
Sponsorship
Royal Society (NA160115)
Ministry of Science, Technology and Innovation (Malaysia) (MOSTI) (via Universiti Teknologi Malaysia) (unknown)
Newton-Ungku Omar Fund: Advanced Fellowship (NA160115)