Normative pathways in the functional connectome.
View / Open Files
Publication Date
2019-01-01Journal Title
Neuroimage
ISSN
1053-8119
Publisher
Elsevier BV
Volume
184
Pages
317-334
Language
eng
Type
Article
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
Leming, M., Su, L., Chattopadhyay, S., & Suckling, J. (2019). Normative pathways in the functional connectome.. Neuroimage, 184 317-334. https://doi.org/10.1016/j.neuroimage.2018.09.028
Abstract
Functional connectivity is frequently derived from fMRI data to reduce a complex image of the brain to a graph, or "functional connectome". Often shortest-path algorithms are used to characterize and compare functional connectomes. Previous work on the identification and measurement of semi-metric (shortest circuitous) pathways in the functional connectome has discovered cross-sectional differences in major depressive disorder (MDD), autism spectrum disorder (ASD), and Alzheimer's disease. However, while measurements of shortest path length have been analyzed in functional connectomes, less work has been done to investigate the composition of the pathways themselves, or whether the edges composing pathways differ between individuals. Developments in this area would help us understand how pathways might be organized in mental disorders, and if a consistent pattern can be found. Furthermore, studies in structural brain connectivity and other real-world graphs suggest that shortest pathways may not be as important in functional connectivity studies as previously assumed. In light of this, we present a novel measurement of the consistency of pathways across functional connectomes, and an algorithm for improvement by selecting the most frequently occurring "normative pathways" from the k shortest paths, instead of just the shortest path. We also look at this algorithm's effect on various graph measurements, using randomized matrix simulations to support the efficacy of this method and demonstrate our algorithm on the resting-state fMRI (rs-fMRI) of a group of 34 adolescent control participants. Additionally, a comparison of normative pathways is made with a group of 82 age-matched participants, diagnosed with MDD, and in doing so we find the normative pathways that are most disrupted. Our results, which are carried out with estimates of connectivity derived from correlation, partial correlation, and normalized mutual information connectomes, suggest disruption to the default mode, affective, and ventral attention networks. Normative pathways, especially with partial correlation, make greater use of critical anatomical pathways through the striatum, cingulum, and the cerebellum. In summary, MDD is characterized by a disruption of normative pathways of the ventral attention network, increases in alternative pathways in the frontoparietal network in MDD, and a mixture of both in the default mode network. Additionally, within- and between-groups findings depend on the estimate of connectivity.
Keywords
Adolescent depression, Functional connectivity, Graph theory, Major depressive disorder, Pathways, Resting-state fMRI, Adolescent, Adult, Algorithms, Brain, Child, Connectome, Depressive Disorder, Major, Female, Humans, Magnetic Resonance Imaging, Male, Models, Neurological, Nerve Net
Sponsorship
UK Medical Research Council (grant: G0802226)
National Institute for Health Research (NIHR) (grant: 06-05-01)
Alzheimer’s Research UK (ARUK- SRF2017B-1)
Gates Cambridge Scholarship
Funder references
Medical Research Council (G0802226)
Medical Research Council (MR/J012084/1)
Medical Research Council (G1000183)
NETSCC (None)
Medical Research Council (G0001354)
Identifiers
External DOI: https://doi.org/10.1016/j.neuroimage.2018.09.028
This record's URL: https://www.repository.cam.ac.uk/handle/1810/285521
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk