The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal.
View / Open Files
Authors
Correra, Rosa Maria
Ollitrault, David
Valente, Mariana
Mazzola, Alessia
Ferguson-Smith, Anne C
Marazzi, Giovanna
Publication Date
2018-10-02Journal Title
Sci Rep
ISSN
2045-2322
Publisher
Springer Science and Business Media LLC
Volume
8
Issue
1
Pages
14649
Language
eng
Type
Article
Physical Medium
Electronic
Metadata
Show full item recordCitation
Correra, R. M., Ollitrault, D., Valente, M., Mazzola, A., Adalsteinsson, B. T., Ferguson-Smith, A. C., Marazzi, G., & et al. (2018). The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal.. Sci Rep, 8 (1), 14649. https://doi.org/10.1038/s41598-018-32941-x
Abstract
Pw1/Peg3 is an imprinted gene expressed from the paternally inherited allele. Several imprinted genes, including Pw1/Peg3, have been shown to regulate overall body size and play a role in adult stem cells. Pw1/Peg3 is expressed in muscle stem cells (satellite cells) as well as a progenitor subset of muscle interstitial cells (PICs) in adult skeletal muscle. We therefore examined the impact of loss-of-function of Pw1/Peg3 during skeletal muscle growth and in muscle stem cell behavior. We found that constitutive loss of Pw1/Peg3 function leads to a reduced muscle mass and myofiber number. In newborn mice, the reduction in fiber number is increased in homozygous mutants as compared to the deletion of only the paternal Pw1/Peg3 allele, indicating that the maternal allele is developmentally functional. Constitutive and a satellite cell-specific deletion of Pw1/Peg3, revealed impaired muscle regeneration and a reduced capacity of satellite cells for self-renewal. RNA sequencing analyses revealed a deregulation of genes that control mitochondrial function. Consistent with these observations, Pw1/Peg3 mutant satellite cells displayed increased mitochondrial activity coupled with accelerated proliferation and differentiation. Our data show that Pw1/Peg3 regulates muscle fiber number determination during fetal development in a gene-dosage manner and regulates satellite cell metabolism in the adult.
Keywords
Animals, Animals, Newborn, Cell Self Renewal, Cells, Cultured, Fetal Development, Gene Dosage, Genomic Imprinting, Kruppel-Like Transcription Factors, Male, Mice, Mice, Transgenic, Models, Animal, Muscle Development, Muscle Fibers, Skeletal, Regeneration, Satellite Cells, Skeletal Muscle
Sponsorship
Medical Research Council (MR/R009791/1)
Identifiers
External DOI: https://doi.org/10.1038/s41598-018-32941-x
This record's URL: https://www.repository.cam.ac.uk/handle/1810/285694
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk