Show simple item record

dc.contributor.authorHantschmann, Constanze
dc.contributor.authorVasilyev, Petr
dc.contributor.authorChen, S
dc.contributor.authorLiao, M
dc.contributor.authorSeeds, AJ
dc.contributor.authorLiu, H
dc.contributor.authorPenty, Richard
dc.contributor.authorWhite, Ian
dc.date.accessioned2018-11-24T00:31:38Z
dc.date.available2018-11-24T00:31:38Z
dc.date.issued2018-09-15
dc.identifier.issn0733-8724
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/285955
dc.description.abstract© 1983-2012 IEEE. We report the first demonstration of gain-switched optical pulses generated by continuous-wave 1.3 μm InAs/GaAs quantum dot (QD) broad-area lasers directly grown on silicon. The shortest observed pulses have typical durations between 175 and 200 ps with peak output powers of up to 66 mW. By varying the drive current pulsewidth and amplitude systematically, we find that the peak optical power is maximized through sufficiently long high-amplitude drive pulses, whereas shorter drive pulses with high amplitudes yield the narrowest achievable pulses. A three-level rate equation travelling-wave model is used for the simulation of our results in order to gain a first insight into the underlying physics and the laser parameters responsible for the observed behavior. The simulations indicate that a limited gain from the InAs QDs and a very high gain compression factor are the main factors contributing to the increased pulsewidth. As the optical spectra of the tested broad-area QD laser give a clear evidence of multitransverse-mode operation, the laser's dynamic response could be additionally limited by transversal variations of the gain, carrier density, and photon density over the 50 μm wide laser waveguide.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.titleGain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon
dc.typeArticle
prism.endingPage3842
prism.issueIdentifier18
prism.publicationDate2018
prism.publicationNameJournal of Lightwave Technology
prism.startingPage3837
prism.volume36
dc.identifier.doi10.17863/CAM.33282
dcterms.dateAccepted2018-06-23
rioxxterms.versionofrecord10.1109/JLT.2018.2851918
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-09-15
dc.contributor.orcidHantschmann, Constanze [0000-0002-8755-596X]
dc.contributor.orcidVasilyev, Petr [0000-0002-4680-910X]
dc.contributor.orcidChen, S [0000-0002-4361-0664]
dc.contributor.orcidSeeds, AJ [0000-0002-5228-627X]
dc.contributor.orcidLiu, H [0000-0002-7654-8553]
dc.contributor.orcidPenty, Richard [0000-0003-4605-1455]
dc.contributor.orcidWhite, Ian [0000-0002-7368-0305]
dc.identifier.eissn1558-2213
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/H022384/1)
cam.issuedOnline2018-06-29
rioxxterms.freetoread.startdate2019-09-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record