Repository logo
 

The shear mode of multilayer graphene

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Tan, PH 
Han, WP 
Zhao, WJ 
Wu, ZH 
Chang, K 

Abstract

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm−1 in bulk graphite to ~31 cm−1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

Description

Keywords

cond-mat.mes-hall, cond-mat.mes-hall, cond-mat.mtrl-sci

Journal Title

Nature Materials

Conference Name

Journal ISSN

1476-1122
1476-4660

Volume Title

Publisher

Springer Nature
Sponsorship
Engineering and Physical Sciences Research Council (EP/G042357/1)