Evidence of stratification in binary colloidal films from microbeam X-ray scattering: Toward optimizing the evaporative assembly processes for coatings
View / Open Files
Authors
Routh, AF
Carr, Amanda
Liu, Weiping
Yager, Kevin G
Bhatia, Surita
Publication Date
2018Journal Title
ACS Applied nano materials
ISSN
2574-0970
Publisher
American Chemical society
Volume
1
Issue
8
Pages
4211-4217
Type
Article
Metadata
Show full item recordCitation
Routh, A., Carr, A., Liu, W., Yager, K. G., & Bhatia, S. (2018). Evidence of stratification in binary colloidal films from microbeam X-ray scattering: Toward optimizing the evaporative assembly processes for coatings. ACS Applied nano materials, 1 (8), 4211-4217. https://doi.org/10.1021/acsanm.8b00968
Abstract
Colloidal films have many important applications where a layered configuration is desirable, including flexible electronics, anti-reflective coatings, and anti-microbial paints. We report stratification during evaporative film formation in binary colloidal dispersion, probed using a
novel microbeam small-angle X-ray scattering (SAXS) technique. To our knowledge, SAXS approaches have not been used to experimentally obtain quantitative data of concentration profiles in multicomponent colloidal films. We measured the local scattering of a film at different vertical locations using a microfocused X-ray beam and determined particle concentrations at different film depths using a linear combination analysis of the mixed film and pure film scattering data. Using small particle size ratios ranging from 2.55 to 1.25, we experimentally observed and quantify three distinct stratification configurations: inverted small on-
top, large-on-top, and no stratification. Our results show some agreement with a previously proposed stratification state diagram, although there are some limitations. Experimental verification of these stratification phenomena is critical to fully understanding the physics of particle movement and structure development during film formation, which is crucial for optimizing evaporative assembly processes for coatings.
Keywords
SAXS, films, evaporative assembly, stratification, coatings, colloids
Sponsorship
Financial support for this work was provided by the National Science Foundation through award CBET-1335787 and a Department of Education Graduate Assistance in Areas of National Need (GAANN) fellowship for A. J. C., Award P200A160163. This research used beamline 11-BM, CMS, of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.
Identifiers
External DOI: https://doi.org/10.1021/acsanm.8b00968
This record's URL: https://www.repository.cam.ac.uk/handle/1810/286139
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk