Repository logo
 

A mixed-fidelity numerical study for Fan-Distortion interaction

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Cui, J 
Vadlamani, NR 

Abstract

jats:pInlet distortion often occurs under off-design conditions when a flow separates within an intake and this unsteady phenomenon can seriously impact fan performance. Fan–distortion interaction is a highly unsteady aerodynamic process into which high-fidelity simulations can provide detailed insights. However, due to limitations on the computational resource, the use of an eddy resolving method for a fully resolved fan calculation is currently infeasible within industry. To solve this problem, a mixed-fidelity computational fluid dynamics method is proposed. This method uses the large Eddy simulation (LES) approach to resolve the turbulence associated with separation and the immersed boundary method (IBM) with smeared geometry (IBMSG) to model the fan. The method is validated by providing comparisons against the experiment on the Darmstadt Rotor, which shows a good agreement in terms of total pressure distributions. A detailed investigation is then conducted for a subsonic rotor with an annular beam-generating inlet distortion. A number of studies are performed in order to investigate the fan's influence on the distortions. A comparison to the case without a fan shows that the fan has a significant effect in reducing distortions. Three fan locations are examined which reveal that the fan nearer to the inlet tends to have a higher pressure recovery. Three beams with different heights are also tested to generate various degrees of distortion. The results indicate that the fan can suppress the distortions and that the recovery effect is proportional to the degree of inlet distortion.</jats:p>

Description

Keywords

4012 Fluid Mechanics and Thermal Engineering, 40 Engineering, 4001 Aerospace Engineering

Journal Title

Journal of Turbomachinery

Conference Name

Journal ISSN

0889-504X
1528-8900

Volume Title

140

Publisher

ASME International