Repository logo
 

Transistor in a tube: A route to three-dimensional bioelectronics.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Abstract

Advances in three-dimensional (3D) cell culture materials and techniques, which more accurately mimic in vivo systems to study biological phenomena, have fostered the development of organ and tissue models. While sophisticated 3D tissues can be generated, technology that can accurately assess the functionality of these complex models in a high-throughput and dynamic manner is not well adapted. Here, we present an organic bioelectronic device based on a conducting polymer scaffold integrated into an electrochemical transistor configuration. This platform supports the dual purpose of enabling 3D cell culture growth and real-time monitoring of the adhesion and growth of cells. We have adapted our system to a 3D tubular geometry facilitating free flow of nutrients, given its relevance in a variety of biological tissues (e.g., vascular, gastrointestinal, and kidney) and processes (e.g., blood flow). This biomimetic transistor in a tube does not require photolithography methods for preparation, allowing facile adaptation to the purpose. We demonstrate that epithelial and fibroblast cells grow readily and form tissue-like architectures within the conducting polymer scaffold that constitutes the channel of the transistor. The process of tissue formation inside the conducting polymer channel gradually modulates the transistor characteristics. Correlating the real-time changes in the steady-state characteristics of the transistor with the growth of the cultured tissue, we extract valuable insights regarding the transients of tissue formation. Our biomimetic platform enabling label-free, dynamic, and in situ measurements illustrates the potential for real-time monitoring of 3D cell culture and compatibility for use in long-term organ-on-chip platforms.

Description

Keywords

Animals, Cell Adhesion, Cell Culture Techniques, Dogs, Equipment Design, Freeze Drying, Humans, Madin Darby Canine Kidney Cells, Microscopy, Electron, Scanning, Polystyrenes, Thiophenes, Tissue Scaffolds, Transistors, Electronic

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

4

Publisher

American Association for the Advancement of Science (AAAS)
Sponsorship
European Research Council (723951)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (704175)
ANR 3Bs project for SI and CP (ANR15-CE18-0004-001) bourse doctorale from Ecole des Mines de St. Etienne H2020 ERC CoG grant “IMBIBE” GA No. 723951 H2020-MSCA-IF-2015 grant “SMART-BONE” GA No. 704175 .