Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel
View / Open Files
Authors
Alam, SB
Goodwin, CS
Parks, GT
Publication Date
2019Journal Title
Progress in Nuclear Energy
ISSN
0149-1970
Publisher
Elsevier BV
Volume
111
Pages
24-41
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Alam, S., Goodwin, C., & Parks, G. (2019). Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel. Progress in Nuclear Energy, 111 24-41. https://doi.org/10.1016/j.pnucene.2018.10.011
Abstract
In this reactor physics study, we examine the neutronic performance of accident-tolerant fuel (ATF) claddings – austenitic type 310 stainless steel (310SS), ferritic Fe-20Cr-5Al (FeCrAl), advanced powder metallurgic ferritic (APMT), and silicon carbide (SiC)-based materials – as alternative cladding materials compared with Zircaloy-4 (Zr) cladding. The cores considered use 18% 235U enriched micro-heterogeneous ThO2-UO2 duplex fuel and, for purposes of comparison, 15% 235U enriched homogeneously mixed all-UO2 fuel, loaded into 13×13 pin arrays. A constant cladding coating thickness of 655 μm is assumed. We use the WIMS reactor physics code to analyse the associated reactivity, achievable discharge burnup, spectral variations, rim effect and reactivity feedback parameters for the candidate cladding materials
at the assembly level.
The results show that candidate fuels with 310SS cladding exhibit a ∼13% discharge
burnup penalty compared to Zr due to the presence of a very high nickel (Ni) concentration. The high neutron absorption cross-sections of iron (Fe) in the FeCrAl and APMT claddings also lead to a ∼10% discharge burnup penalty. The fuels with SiC cladding can achieve a ∼1% higher discharge burnup compared to Zr due to the low thermal neutron absorption cross-sections of its constituents and the softer neutron spectrum. The claddings with lower capture cross-sections (SiC and Zr) exhibit higher relative fission power at the pellet periphery. For both candidate fuels, the end-of-life 239Pu (for UO2 fuel) and 233U (for duplex fuel) inventories are higher for the claddings (Fe-based: FeCrAl, APMT and steel-based: 310SS) with higher thermal capture cross-sections, unlike for SiC and Zr, where SiC provides higher end-of-life 239Pu and 233U inventories despite having lower capture cross-section than that of the Zr. Reactivity feedback parameter values (moderator and fuel temperature coefficients) are more negative for the duplex fuel than the UO2 fuel for all the candidate claddings, with claddings with harder spectra exhibiting more negative values. The duplex fuel yields a softer spectrum than the UO2 fuel with the candidate claddings, which improves neutron economy and thus discharge burnup.
Keywords
Accident-tolerant cladding, Soluble-boron-free design, Micro-heterogeneous duplex fuel, Reactivity, Achievable discharge bumup, Spectral hardening, Rim effect, Reactivity feedback parameters
Identifiers
External DOI: https://doi.org/10.1016/j.pnucene.2018.10.011
This record's URL: https://www.repository.cam.ac.uk/handle/1810/286406
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk