Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke.
View / Open Files
Authors
Xu, Huichun
Ryan, Kathleen
Jaworek, Thomas
Dueker, Nicole
McArdle, Patrick
Cheng, Yu-Ching
O'Connell, Jeffrey
Bevan, Steve
Malik, Rainer
Ahmed, Naveed Uddin
Amouyel, Philippe
Anjum, Sheraz
Bis, Joshua C
Crosslin, David
Danesh, John
Engelter, Stefan T
Fornage, Myriam
Frossard, Philippe
Gieger, Christian
Giese, Anne-Katrin
Grond-Ginsbach, Caspar
Ho, Weang Kee
Holliday, Elizabeth
Hopewell, Jemma
Hussain, M
Iqbal, W
Jabeen, S
Jannes, Jim
Kamal, Ayeesha
Kamatani, Yoichiro
Kanse, Sandip
Kloss, Manja
Lathrop, Mark
Leys, Didier
Lindgren, Arne
Longstreth, WT
Mahmood, Khalid
Meisinger, Christa
Metso, Tiina M
Mosley, Thomas
Müller-Nurasyid, Martina
Norrving, Bo
Parati, Eugenio
Peters, Annette
Quereshi, I
Rasheed, Asif
Rauf, A
Salam, T
Shen, Jess
Słowik, Agnieszka
Stanne, Tara
Strauch, Konstantin
Tatlisumak, Turgut
Tiedt, Steffen
Traylor, Matthew
Waldenberger, Melanie
Walters, Matthew
Zhao, Wei
Boncoraglio, Giorgio
Debette, Stéphanie
Jern, Christina
Levi, Christopher
Markus, Hugh
Meschia, James
Rolfs, Arndt
Rothwell, Peter
Saleheen, Danish
Seshadri, Sudha
Sharma, Pankaj
Sudlow, Cathie
Worrall, Bradford
METASTROKE Consortium of the ISGC
WTCCC-2 Consortium
Stine, O Colin
Kittner, Steven J
Mitchell, Braxton D
Publication Date
2018Journal Title
PLoS One
ISSN
1932-6203
Publisher
Public Library of Science (PLoS)
Volume
13
Issue
11
Pages
e0206554
Language
eng
Type
Article
This Version
VoR
Physical Medium
Electronic-eCollection
Metadata
Show full item recordCitation
Cole, J. W., Xu, H., Ryan, K., Jaworek, T., Dueker, N., McArdle, P., Gaynor, B., et al. (2018). Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke.. PLoS One, 13 (11), e0206554. https://doi.org/10.1371/journal.pone.0206554
Abstract
BACKGROUND AND PURPOSE: Polymorphisms in coagulation genes have been associated with early-onset ischemic stroke. Here we pursue an a priori hypothesis that genetic variation in the endothelial-based receptors of the thrombomodulin-protein C system (THBD and PROCR) may similarly be associated with early-onset ischemic stroke. We explored this hypothesis utilizing a multi-stage design of discovery and replication. METHODS: Discovery was performed in the Genetics-of-Early-Onset Stroke (GEOS) Study, a biracial population-based case-control study of ischemic stroke among men and women aged 15-49 including 829 cases of first ischemic stroke (42.2% African-American) and 850 age-comparable stroke-free controls (38.1% African-American). Twenty-four single-nucleotide-polymorphisms (SNPs) in THBD and 22 SNPs in PROCR were evaluated. Following LD pruning (r2≥0.8), we advanced uncorrelated SNPs forward for association analyses. Associated SNPs were evaluated for replication in an early-onset ischemic stroke population (onset-age<60 years) consisting of 3676 cases and 21118 non-stroke controls from 6 case-control studies. Lastly, we determined if the replicated SNPs also associated with older-onset ischemic stroke in the METASTROKE data-base. RESULTS: Among GEOS Caucasians, PROCR rs9574, which was in strong LD with 8 other SNPs, and one additional independent SNP rs2069951, were significantly associated with ischemic stroke (rs9574, OR = 1.33, p = 0.003; rs2069951, OR = 1.80, p = 0.006) using an additive-model adjusting for age, gender and population-structure. Adjusting for risk factors did not change the associations; however, associations were strengthened among those without risk factors. PROCR rs9574 also associated with early-onset ischemic stroke in the replication sample (OR = 1.08, p = 0.015), but not older-onset stroke. There were no PROCR associations in African-Americans, nor were there any THBD associations in either ethnicity. CONCLUSION: PROCR polymorphisms are associated with early-onset ischemic stroke in Caucasians.
Keywords
Adolescent, Adult, Black or African American, Age of Onset, Brain Ischemia, Case-Control Studies, Endothelial Protein C Receptor, Female, Genetic Association Studies, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Stroke, Thrombomodulin, White People, Young Adult
Sponsorship
This study was supported in part by NIH grants U01 NS069208, R01 NS100178, and R01 NS105150; an Epidemiology of Aging Training Program Grant, NIH/NIA T32 AG000262; the U.S. Department of Veterans Affairs, and the American Heart Association Cardiovascular Genome-Phenome Study (grant# 15GPSPG23770000), and an American Heart Association Discovery Grant supported by Bayer Group (grant# 17IBDG33700328). Further details regarding the data collection, organization, funding and relationships between METASTROKE and the other studies involved can be found below. Genetics of Early Onset Stroke (GEOS) Study (Baltimore, USA): GWAS data for the GEOS Study was supported by the National Institutes of Health Genes, Environment and Health Initiative (GEI) grant U01 HG004436, as part of the GENEVA consortium under GEI, with additional support provided by the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488); and the Office of Research and Development, Medical Research Service, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the National Institutes of Health to the Johns Hopkins University (contract number HHSN268200782096C). Assistance with data cleaning was provided by the GENEVA Coordinating Center (U01 HG 004446; PI Bruce S Weir). Study recruitment and collection of datasets were supported by a cooperative agreement with the Division of Adult and Community Health, Centers for Disease Control and by grants from the National Institute of Neurological Disorders and Stroke (NINDS) and the NIH Office of Research on Women's Health (R01 NS45012, U01 NS069208-01). METASTROKE: METASTROKE is a collaboration of numerous international studies with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischemic stroke and its subtypes. Included studies are as follows: ASGC: Australian population control data were derived from the Hunter Community Study. We also thank the University of Newcastle for funding and the men and women of the Hunter region who participated in this study. This research was funded by grants from the Australian National and Medical Health Research Council (NHMRC Project Grant ID: 569257), the Australian National Heart Foundation (NHF Project Grant ID: G 04S 1623), the University of Newcastle, the Gladys M Brawn Fellowship scheme, and the Vincent Fairfax Family Foundation in Australia. Elizabeth G Holliday was supported by a Fellowship from the National Heart Foundation and National Stroke Foundation of Australia (ID: 100071). BRAINS: Bio-Repository of DNA in Stroke (BRAINS) is partly funded by a Senior Fellowship from the Department of Health (UK) to P Sharma, the Henry Smith Charity and the UK-India Education Research Institutive (UKIERI) from the British Council. HPS: Heart Protection Study (HPS) (ISRCTN48489393) was supported by the UK Medical Research Council (MRC), British Heart Foundation, Merck and Co (manufacturers of simvastatin), and Roche Vitamins Ltd (manufacturers of vitamins). Genotyping was supported by a grant to Oxford University and CNG from Merck and Co. Jemma C Hopewell acknowledges support from the British Heart Foundation (FS/14/55/30806). ISGS: Ischemic Stroke Genetics Study (ISGS)/Siblings With Ischemic Stroke Study (SWISS) was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000954-06. ISGS/SWISS used samples and clinical data from the NIH-NINDS Human Genetics Resource Center DNA and Cell Line Repository (http://ccr.coriell.org/ninds), human subjects protocol numbers 2003-081 and 2004-147. ISGS/SWISS used stroke-free participants from the Baltimore Longitudinal Study of Aging (BLSA) as controls. The inclusion of BLSA samples was supported in part by the Intramural Research Program of the NIA, NIH project Z01 AG-000015-50, human subjects protocol number 2003-078. The ISGS study was funded by NIH-NINDS grant R01 NS-42733 (JF Meschia). The SWISS study was funded by NIH-NINDS grant R01 NS-39987 (J F Meschia). This study used the high-performance computational capabilities of the Biowulf Linux cluster at the NIH (http://biowulf.nih.gov). MGH-GASROS: MGH Genes Affecting Stroke Risk and Outcome Study (MGH-GASROS) was supported by NINDS (U01 NS069208), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research 0775010N, the NIH and NHLBI's STAMPEED genomics research program (R01 HL087676), and a grant from the National Center for Research Resources. The Broad Institute Center for Genotyping and Analysis is supported by grant U54 RR020278 from the National Center for Research resources. MILANO: Milano - Besta Stroke Register Collection and genotyping of the Milan cases within CEDIR were supported by the Italian Ministry of Health (grant numbers: RC 2007/LR6, RC 2008/LR6; RC 2009/LR8; RC 2010/LR8; GR-2011-02347041). FP6 LSHM-CT-2007-037273 for the PROCARDIS control samples. WTCCC2: Wellcome Trust Case-Control Consortium 2 (WTCCC2) was principally funded by the Wellcome Trust, as part of the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z and WT084724MA). The Stroke Association provided additional support for collection of some of the St George's, London cases. The Oxford cases were collected as part of the Oxford Vascular Study which is funded by the MRC, Stroke Association, Dunhill Medical Trust, National Institute of Health Research (NIHR) and the NIHR Biomedical Research Centre, Oxford. The Edinburgh Stroke Study was supported by the Wellcome Trust (clinician scientist award to C Sudlow), and the Binks Trust. Sample processing occurred in the Genetics Core Laboratory of the Wellcome Trust Clinical Research Facility, Western General Hospital, Edinburgh. Much of the neuroimaging occurred in the Scottish Funding Council Brain Imaging Research Centre (www.sbirc.ed.ac.uk), Division of Clinical Neurosciences, University of Edinburgh, a core area of the Wellcome Trust Clinical Research Facility and part of the SINAPSE (Scottish Imaging Network—A Platform for Scientific Excellence) collaboration (www.sinapse.ac.uk), funded by the Scottish Funding Council and the Chief Scientist Office. Collection of the Munich cases and data analysis was supported by the Vascular Dementia Research Foundation. M Farrall and A Helgadottir acknowledge support from the BHF Centre of Research Excellence in Oxford and the Wellcome Trust core award (090532/Z/09/Z). VISP: The GWAS component of the Vitamin Intervention for Stroke Prevention (VISP) study was supported by the United States National Human Genome Research Institute (NHGRI), grant U01 HG005160 (PI Michèle Sale & Bradford Worrall), as part of the Genomics and Randomized Trials Network (GARNET). Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to the Johns Hopkins University. Assistance with data cleaning was provided by the GARNET Coordinating Center (U01 HG005157; PI Bruce S Weir). Study recruitment and collection of datasets for the VISP clinical trial were supported by an investigator-initiated research grant (R01 NS34447; PI James Toole) from the United States Public Health Service, NINDS, Bethesda, Maryland. Control data obtained through the database of genotypes and phenotypes (dbGAP) maintained and supported by the United States National Center for Biotechnology Information, US National Library of Medicine. WHI: Funding support for WHI-GARNET was provided through the NHGRI GARNET (Grant Number U01 HG005152). Assistance with phenotype harmonisation and genotype cleaning, as well as with general study coordination, was provided by the GARNET Coordinating Center (U01 HG005157). Funding support for genotyping, which was performed at the Broad Institute of MIT and Harvard, was provided by the NIH Genes, Environment, and Health Initiative (GEI; U01 HG004424). SiGN: The Stroke Genetics Network (SiGN) study was funded by a cooperative agreement grant from the National Institute of Neurological Disorders and Stroke (NINDS) U01 NS069208. Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the National Institutes of Health (NIH) to the Johns Hopkins University (contract no. HHSN268200782096C). The Biostatistics Department Genetics Coordinating Center at the University of Washington (Seattle) provided more extensive quality control of the genotype data through a subcontract with CIDR. Additional support to the Administrative Core of SiGN was provided by the Dean’s Office, University of Maryland School of Medicine. This work was supported by grants received from the German Federal Ministry of Education and Research (BMBF) in the context of the e:Med program (e:AtheroSysMed), the FP7 European Union project CVgenes@target (261123), the DFG as part of the CRC 1123 (B3), the Corona Foundation and the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain).
Funder references
Medical Research Council (MR/L003120/1)
British Heart Foundation (None)
Identifiers
External DOI: https://doi.org/10.1371/journal.pone.0206554
This record's URL: https://www.repository.cam.ac.uk/handle/1810/286726
Rights
CC0 No rights reserved
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk