Repository logo
 

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Gómez-Bombarelli, Rafael  ORCID logo  https://orcid.org/0000-0002-9495-8599
Duvenaud, David 
Hernández-Lobato, José Miguel 
Sánchez-Lengeling, Benjamín 

Abstract

We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to discrete molecular representations. The predictor estimates chemical properties from the latent continuous vector representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

Description

Keywords

cs.LG, cs.LG, physics.chem-ph

Journal Title

ACS Cent Sci

Conference Name

Journal ISSN

2374-7943
2374-7951

Volume Title

4

Publisher

American Chemical Society (ACS)

Rights

Publisher's own licence