Repository logo
 

Closed-loop Characterization of Noise and Stability in a Mode-localized Resonant MEMS Sensor.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Pandit, Milind Narasimha  ORCID logo  https://orcid.org/0000-0002-7862-7984
Zhao, Chun 
Sobreviela, Guillermo 
Mustafazade, Arif 

Abstract

This paper presents results from the closed-loop characterization of an electrically coupled mode-localized sensor topology including measurements of amplitude ratios over long duration, stability, noise floor and the bandwidth of operation. The sensitivity of the prototype sensor is estimated to be -5250 in the linear operation regime. An input-referred stability of 84ppb with respect to normalized stiffness perturbations is achieved at 500s. When compared to frequency shift sensing within the same device, amplitude ratio sensing provides higher resolution for long term measurements due to the intrinsic common mode rejection properties of a mode-localized system. A theoretical framework is established to quantify noise floor associated with measurements validated through numerical simulations and experimental data. In addition, the operating bandwidth of the sensor is found to be 3.5Hz for 3dB flatness.

Description

Keywords

Force sensitivity, force sensor, MEMS, resonant sensor, thermal noise

Journal Title

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Conference Name

Journal ISSN

0885-3010
1525-8955

Volume Title

Publisher

IEEE
Sponsorship
Natural Environment Research Council (NE/N012097/1)
Engineering and Physical Sciences Research Council (EP/I019308/1)
Engineering and Physical Sciences Research Council (EP/K000314/1)
Engineering and Physical Sciences Research Council (EP/L010917/1)
Engineering and Physical Sciences Research Council (EP/N021614/1)