Reactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learning.
View / Open Files
Authors
Caro, Miguel A
Aarva, Anja
Deringer, Volker L
Csányi, Gábor
Laurila, Tomi
Publication Date
2018-11-13Journal Title
Chem Mater
ISSN
0897-4756
Publisher
American Chemical Society (ACS)
Volume
30
Issue
21
Pages
7446-7455
Language
eng
Type
Article
This Version
VoR
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
Caro, M. A., Aarva, A., Deringer, V. L., Csányi, G., & Laurila, T. (2018). Reactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learning.. Chem Mater, 30 (21), 7446-7455. https://doi.org/10.1021/acs.chemmater.8b03353
Abstract
Systematic atomistic studies of surface reactivity for amorphous materials have not been possible in the past because of the complexity of these materials and the lack of the computer power necessary to draw representative statistics. With the emergence and popularization of machine learning (ML) approaches in materials science, systematic (and accurate) studies of the surface chemistry of disordered materials are now coming within reach. In this paper, we show how the reactivity of amorphous carbon (a-C) surfaces can be systematically quantified and understood by a combination of ML interatomic potentials, ML clustering techniques, and density functional theory calculations. This methodology allows us to process large amounts of atomic data to classify carbon atomic motifs on the basis of their geometry and quantify their reactivity toward hydrogen- and oxygen-containing functionalities. For instance, we identify subdivisions of sp and sp2 motifs with markedly different reactivities. We therefore draw a comprehensive, both qualitative and quantitative, picture of the surface chemistry of a-C and its reactivity toward -H, -O, -OH, and -COOH. While this paper focuses on a-C surfaces, the presented methodology opens up a new systematic and general way to study the surface chemistry of amorphous and disordered materials.
Keywords
0306 Physical Chemistry (incl. Structural)
Sponsorship
Engineering and Physical Sciences Research Council (EP/P022596/1)
Identifiers
External DOI: https://doi.org/10.1021/acs.chemmater.8b03353
This record's URL: https://www.repository.cam.ac.uk/handle/1810/286988
Rights
Publisher's own licence
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk