Show simple item record

dc.contributor.authorCaro, Miguel A
dc.contributor.authorAarva, Anja
dc.contributor.authorDeringer, Volker L
dc.contributor.authorCsányi, Gábor
dc.contributor.authorLaurila, Tomi
dc.date.accessioned2018-12-15T00:30:33Z
dc.date.available2018-12-15T00:30:33Z
dc.date.issued2018-11-13
dc.identifier.issn0897-4756
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/286988
dc.description.abstractSystematic atomistic studies of surface reactivity for amorphous materials have not been possible in the past because of the complexity of these materials and the lack of the computer power necessary to draw representative statistics. With the emergence and popularization of machine learning (ML) approaches in materials science, systematic (and accurate) studies of the surface chemistry of disordered materials are now coming within reach. In this paper, we show how the reactivity of amorphous carbon (a-C) surfaces can be systematically quantified and understood by a combination of ML interatomic potentials, ML clustering techniques, and density functional theory calculations. This methodology allows us to process large amounts of atomic data to classify carbon atomic motifs on the basis of their geometry and quantify their reactivity toward hydrogen- and oxygen-containing functionalities. For instance, we identify subdivisions of sp and sp2 motifs with markedly different reactivities. We therefore draw a comprehensive, both qualitative and quantitative, picture of the surface chemistry of a-C and its reactivity toward -H, -O, -OH, and -COOH. While this paper focuses on a-C surfaces, the presented methodology opens up a new systematic and general way to study the surface chemistry of amorphous and disordered materials.
dc.format.mediumPrint-Electronic
dc.languageeng
dc.publisherAmerican Chemical Society (ACS)
dc.rightsPublisher's own licence
dc.titleReactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learning.
dc.typeArticle
prism.endingPage7455
prism.issueIdentifier21
prism.publicationDate2018
prism.publicationNameChem Mater
prism.startingPage7446
prism.volume30
dc.identifier.doi10.17863/CAM.34297
dcterms.dateAccepted2018-09-10
rioxxterms.versionofrecord10.1021/acs.chemmater.8b03353
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-11
dc.contributor.orcidDeringer, Volker [0000-0001-6873-0278]
dc.identifier.eissn1520-5002
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P022596/1)
cam.issuedOnline2018-09-10


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record