Harvesting-throughput trade-off for wireless-powered smart grid IoT applications: An experimental study

Pehlivanoglu, EB 
Ozger, M 
Cetinkaya, O 
Akan, OB 

Thumbnail Image
Conference Object
Change log

© 2018 IEEE. Sensor nodes, one of the most crucial elements of Internet of Things (IoT), sense the environment and send their observations to a remote Access Point (AP). One drawback of sensor nodes in an IoT setting is their limited battery supply. Hereby, energy harvesting (EH) stands as a promising solution to reduce or even completely eliminate lifetime constraints of sensors with exploitation of available resources. In this paper, we propose an electric-field EH (EFEH) method to enable battery-less execution of sensor-based IoT services for Smart Grid (SG) context. For this purpose, for the first time in the literature, harvestable energy through EFEH method is investigated with a transformer room experimental set-up. Our experiments reveal that 40 mJ of energy can be harvested in a period of 900 sec with the proposed EFEH method. Building on this energy profile, we define a throughput objective function θ for a «harvest-then-transmit» type system model, to shed light on the harvesting- throughput trade-off specific to IoT-assisted SG applications. Numerical results disclose non- trivial relationships between optimal harvesting period T-H, optimal transmission period T-T and critical network parameters such as node-AP hop distance, path loss exponent and minimum reporting frequency requirement.

Publication Date
Online Publication Date
Acceptance Date
Electric-field, Energy Harvesting, Internet of Things, Smart Grid, Throughput Maximization
Journal Title
IEEE International Conference on Communications
Journal ISSN
Volume Title