Show simple item record

dc.contributor.authorOakes, Ten
dc.contributor.authorPowell, Sen
dc.contributor.authorCastelnovo, Claudioen
dc.contributor.authorLamacraft, Austenen
dc.contributor.authorGarrahan, JPen
dc.date.accessioned2018-12-18T13:13:26Z
dc.date.available2018-12-18T13:13:26Z
dc.date.issued2018-08-02en
dc.identifier.issn2469-9950
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/287143
dc.description.abstractWe study the connection between the phase behavior of quantum dimers and the dynamics of classical stochastic dimers. At the so-called Rokhsar-Kivelson (RK) point a quantum dimer Hamiltonian is equivalent to the Markov generator of the dynamics of classical dimers. A less well understood fact is that away from the RK point the quantum-classical connection persists: in this case the Hamiltonian corresponds to a nonstochastic "tilted" operator that encodes the statistics of time-integrated observables of the classical stochastic problem. This implies a direct relation between the phase behavior of quantum dimers and properties of ensembles of stochastic trajectories of classical dimers. We make these ideas concrete by studying fully packed dimers on the square lattice. Using transition path sampling - supplemented by trajectory umbrella sampling - we obtain the large deviation statistics of dynamical activity in the classical problem, and show the correspondence between the phase behavior of the classical and quantum systems. The transition at the RK point between quantum phases of distinct order corresponds, in the classical case, to a trajectory phase transition between active and inactive dynamical phases. Furthermore, from the structure of stochastic trajectories in the active dynamical phase we infer that the ground state of quantum dimers has columnar order to one side of the RK point. We discuss how these results relate to those from quantum Monte Carlo, and how our approach may generalize to other problems.
dc.description.sponsorshipThis work was supported by Engineering and Physical Sciences Research Council (EPSRC) Grants No. EP/M019691/1 (S.P.), No. EP/P034616/1 (C.C. and A.L.), No. EP/K028960/1 (C.C.), and No. EP/M014266/1 (J.P.G.).
dc.publisherAmerican Physical Society
dc.titlePhases of quantum dimers from ensembles of classical stochastic trajectoriesen
dc.typeArticle
prism.number064302en
prism.publicationDate2018en
prism.publicationNamePhysical Review Ben
prism.volume98en
dc.identifier.doi10.17863/CAM.23369
dcterms.dateAccepted2018-07-19en
rioxxterms.versionofrecord10.1103/PhysRevB.98.064302en
rioxxterms.versionAM*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2018-08-02en
dc.contributor.orcidCastelnovo, Claudio [0000-0003-1752-6343]
dc.contributor.orcidLamacraft, Austen [0000-0002-0707-0488]
dc.identifier.eissn2469-9969
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/M007065/1)
pubs.funder-project-idEPSRC (EP/P034616/1)
pubs.funder-project-idEPSRC (EP/K028960/1)
cam.issuedOnline2018-08-08en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record