Show simple item record

dc.contributor.authorBianchi, Men
dc.contributor.authorCamina, Rachelen
dc.contributor.authorHerzog, Men
dc.contributor.authorPacifici, Een
dc.date.accessioned2018-12-20T00:31:43Z
dc.date.available2018-12-20T00:31:43Z
dc.date.issued2015-01-01en
dc.identifier.issn0933-7741
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/287254
dc.description.abstractGiven a finite group $G$, denote by $\Gamma(G)$ the simple undirected graph whose vertices are the distinct sizes of noncentral conjugacy classes of $G$, and set two vertices of $\Gamma(G)$ to be adjacent if and only if they are not coprime numbers. In this note we prove that, if $\Gamma(G)$ is a $k$-regular graph with $k\geq 1$, then $\Gamma(G)$ is a complete graph with $k+1$ vertices.
dc.publisherWalter de Gruyter
dc.titleConjugacy classes of finite groups and graph regularityen
dc.typeArticle
prism.endingPage3172
prism.issueIdentifier6en
prism.publicationDate2015en
prism.publicationNameForum Mathematicumen
prism.startingPage3167
prism.volume27en
dc.identifier.doi10.17863/CAM.34561
rioxxterms.versionofrecord10.1515/forum-2013-0098en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2015-01-01en
dc.identifier.eissn1435-5337
rioxxterms.typeJournal Article/Reviewen
rioxxterms.freetoread.startdate2016-01-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record