Thermodynamic Modeling of the Statistics of Cell Spreading on Ligand-Coated Elastic Substrates.
View / Open Files
Publication Date
2018-12-18Journal Title
Biophys J
ISSN
0006-3495
Publisher
Elsevier BV
Volume
115
Issue
12
Pages
2451-2460
Language
eng
Type
Article
This Version
AM
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
McEvoy, E., Shishvan, S. S., Deshpande, V. S., & McGarry, J. P. (2018). Thermodynamic Modeling of the Statistics of Cell Spreading on Ligand-Coated Elastic Substrates.. Biophys J, 115 (12), 2451-2460. https://doi.org/10.1016/j.bpj.2018.11.007
Abstract
Biological spread cells exist in a perpetually fluctuating state and therefore cannot be described in terms of a unique deterministic system. For modeling approaches to provide novel insight and uncover new mechanisms that drive cell behavior, a framework is required that progresses from traditional deterministic methods (whereby simulation of an experiment predicts a single outcome). In this study, we implement a new, to our knowledge, modeling approach for the analysis of cell spreading on ligand-coated substrates, extending the framework for nonequilibrium thermodynamics of cells developed by Shishvan et al. to include active focal adhesion assembly. We demonstrate that the model correctly predicts the coupled influence of surface collagen density and substrate stiffness on cell spreading, as reported experimentally by Engler et al. Low surface collagen densities are shown to result in a high probability that cells will be restricted to low spread areas. Furthermore, elastic free energy induced by substrate deformation lowers the probability of observing a highly spread cell, and, consequentially, lower cell tractions affect the assembly of focal adhesions. Experimentally measurable observables such as cell spread area and aspect ratio can be directly postprocessed from the computed homeostatic ensemble of (several million) spread states. This allows for the prediction of mean and SDs of such experimental observables. This class of cell mechanics modeling presents a significant advance on conventional deterministic approaches.
Keywords
Biomechanical Phenomena, Cell Size, Collagen, Elasticity, Ligands, Models, Biological, Thermodynamics
Sponsorship
Irish Research Council
Identifiers
External DOI: https://doi.org/10.1016/j.bpj.2018.11.007
This record's URL: https://www.repository.cam.ac.uk/handle/1810/287385
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk