Repository logo
 

Xenopus Models of Cancer: Expanding the Oncologist's Toolbox.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Hardwick, Laura JA 

Abstract

The use of the Xenopus model system has provided diverse contributions to cancer research, not least because of the striking parallels between tumour pathogenesis and early embryo development. Cell cycle regulation, signalling pathways, and cell behaviours such as migration are frequently perturbed in cancers; all have been investigated using Xenopus, and these developmental events can additionally act as an assay for drug development studies. In this mini-review, we focus our discussion primarily on whole embryo Xenopus models informing cancer biology; the contributions to date and future potential. Insights into tumour immunity, oncogene function, and visualisation of vascular responses during tumour formation have all been achieved with naturally occurring tumours and induced-tumour-like-structures in Xenopus. Finally, as we are now entering the era of genetically modified Xenopus models, we can harness genome editing techniques to recapitulate human disease through creating embryos with analogous genetic abnormalities. With the speed, versatility and accessibility that epitomise the Xenopus system, this new range of pre-clinical Xenopus models has great potential to advance our mechanistic understanding of oncogenesis and provide an early in vivo model for chemotherapeutic development.

Description

Keywords

Xenopus, cancer, oncogene, transgenic, tumour

Journal Title

Frontiers in Physiology

Conference Name

Journal ISSN

1664-042X
1664-042X

Volume Title

9

Publisher

Frontiers Media
Sponsorship
Medical Research Council (MC_PC_12009)
Medical Research Council (MR/K018329/1)
Medical Research Council (MR/L021129/1)
Work in AP’s lab was supported by a project grant from Neuroblastoma UK and by core support from the Wellcome Trust and MRC Cambridge Stem Cell. LH was supported by a Peterhouse Research Fellowship.