Exploring the Effect of Micro-climate Data on Building Energy Performance Analysis.
View / Open Files
Journal Title
7th International Conference on Sustainable Development in Building and Environment
Conference Name
SuDBE2015
Type
Conference Object
This Version
AM
Metadata
Show full item recordCitation
Sharmin, T., & Steemers, K. Exploring the Effect of Micro-climate Data on Building Energy Performance Analysis.. 7th International Conference on Sustainable Development in Building and Environment https://doi.org/10.17863/CAM.35209
Abstract
A limitation in the current research is most studies on energy performance of buildings concentrate on individual buildings while its interaction with neighbouring urban context remains largely unexplored. Buildings are considered as isolated masses, disregarding the fact that they belong to an urban environment. Consequently, the energy performance of buildings is generally analysed with the aid of general climatic data, in case of building simulations in particular, which varies significantly with micro-scale climates. Indoor conditions are determined through the interaction between the building surface and synoptic-climatic data uploaded as a weather file. Predicted energy consumption this way by ignoring its urban settings can vary significantly from the actual value. Several studies have demonstrated that microclimate inside urban canyons has substantial influence upon the building energy consumption. Therefore, it is important to incorporate micro-climatic data in energy performance research. This study shows how much difference the micro-climate data can make when used instead of synoptic-climate data by coupling micro-climatic tool Envi-met with Building energy simulation (BES) programme IES-VE. The study also endeavours to identify the best urban arrangement in terms of energy performance among four simple urban arrangements in a hot-humid tropical climate under the hottest scenarios. The results reveal the surface-to-volume ratio as an important parameter in achieving energy efficiency. Among four simple urban blocks, the pavilion model was found to have the lowest cooling demand. However, the pavilion model, mostly made up of non-passive zones is unable to interact with the outdoor environment and therefore, in spite of its energy efficiency, cannot be termed as the best possible option as far as passive buildings are considered.
Sponsorship
27-29 July,
Identifiers
External DOI: https://doi.org/10.17863/CAM.35209
This record's URL: https://www.repository.cam.ac.uk/handle/1810/287896
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk