Repository logo
 

Motor primitives in space and time via targeted gain modulation in cortical networks

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Stroud, Jake P 
Porter, Mason A 
Hennequin, GJE 
Vogels, Tim P 

Abstract

Motor cortex (M1) exhibits a rich repertoire of activities to support the generation of complex movements. Recent network models capture many qualitative aspects of M1 dynamics, but they can generate only a few distinct movements (all of the same duration). We demonstrate that simple modulation of neuronal input–output gains in recurrent neuronal network models with fixed connectivity can dramatically reorganize neuronal activity and consequently downstream muscle outputs. We show that a relatively small number of modulatory control units provide sufficient flexibility to adjust high-dimensional network activity using a simple reward-based learning rule. Furthermore, novel movements can be assembled from previously-learned primitives and we can separately change movement speed while preserving movement shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.

Description

Keywords

Animals, Computer Simulation, Learning, Models, Neurological, Motor Cortex, Movement, Muscle, Skeletal, Nerve Net, Neurons

Journal Title

Nature Neuroscience

Conference Name

Journal ISSN

1097-6256
1546-1726

Volume Title

21

Publisher

Springer Nature
Sponsorship
Wellcome Trust (202111/Z/16/Z)
Our work was supported by grants from the Wellcome Trust (TPV and JPS WT100000, 246 GH 202111/Z/16/Z) and the Engineering and Physical Sciences Research Council (JPS).