Repository logo
 

Bryophyte stable isotope composition, diversity and biomass define tropical montane cloud forest extent.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Horwath, Aline B 
Royles, Jessica 
Tito, Richard 
Gudiño, José A 
Salazar Allen, Noris 

Abstract

Liverworts and mosses are a major component of the epiphyte flora of tropical montane forest ecosystems. Canopy access was used to analyse the distribution and vertical stratification of bryophyte epiphytes within tree crowns at nine forest sites across a 3400 m elevational gradient in Peru, from the Amazonian basin to the high Andes. The stable isotope compositions of bryophyte organic material (13C/12C and 18O/16O) are associated with surface water diffusive limitations and, along with C/N content, provide a generic index for the extent of cloud immersion. From lowland to cloud forest δ13C increased from -33‰ to -27‰, while δ18O increased from 16.3‰ to 18.0‰. Epiphytic bryophyte and associated canopy soil biomass in the cloud immersion zone was estimated at up to 45 t dry mass ha-1, and overall water holding capacity was equivalent to a 20 mm precipitation event. The study emphasizes the importance of diverse bryophyte communities in sequestering carbon in threatened habitats, with stable isotope analysis allowing future elevational shifts in the cloud base associated with changes in climate to be tracked.

Description

Keywords

Amazonia, Peruvian Andes, climate change, liverworts, tropical montane cloud forest, δ13C, Altitude, Biodiversity, Biomass, Bryophyta, Carbon Isotopes, Forests, Oxygen Isotopes, Peru

Journal Title

Proc Biol Sci

Conference Name

Journal ISSN

0962-8452
1471-2954

Volume Title

286

Publisher

The Royal Society
Sponsorship
Natural Environment Research Council (NE/H014632/1)
Natural Environment Research Council (NE/M001946/1)
NERC PhD Studentship