A two-step simulation methodology for modelling stagnation flame synthesised aggregate nanoparticles
View / Open Files
Publication Date
2019-04Journal Title
Combustion and Flame
ISSN
0010-2180
Publisher
Elsevier BV
Volume
202
Pages
143-153
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Lindberg, C., Manuputty, M. Y., Akroyd, J., & Kraft, M. (2019). A two-step simulation methodology for modelling stagnation flame synthesised aggregate nanoparticles. Combustion and Flame, 202 143-153. https://doi.org/10.1016/j.combustflame.2019.01.010
Abstract
A two-step simulation methodology is presented that allows a detailed particle model to be used to resolve the complex morphology of aggregate nanoparticles synthesised in a stagnation flame. In the first step, a detailed chemical mechanism is coupled to a one-dimensional stagnation flow model and spherical particle model solved using method of moments with interpolative closure. The resulting gas-phase profile is post-processed with a detailed stochastic population balance model to simulate the evolution of the population of particles, including the evolution of each individual primary particle and their connectivity with other primaries in an aggregate. A thermophoretic correction is introduced to the post-processing step through a simulation volume scaling term to account for thermophoretic transport effects arising due to the steep temperature gradient near the stagnation surface. The methodology is evaluated by applying it to a test case: the synthesis of titanium dioxide from titanium tetraisopropoxide (TTIP) precursor. The thermophoretic correction is shown to improve the fidelity of the post-process to the first fully-coupled simulation, and the methodology is demonstrated to be feasible for simulating the morphology of aggregate nanoparticles formed in a stagnation flame, permitting the simulation of quantities that are directly comparable to experimental observations.
Sponsorship
National Research Foundation Singapore (via Cambridge Centre for Advanced Research and Education in Singapore (CARES)) (unknown)
Identifiers
External DOI: https://doi.org/10.1016/j.combustflame.2019.01.010
This record's URL: https://www.repository.cam.ac.uk/handle/1810/288795
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.