A Scattering Theory for Linear Waves on the Interior of Reissner–Nordström Black Holes
dc.contributor.author | Kehle, Christoph | en |
dc.contributor.author | Shlapentokh-Rothman, Yakov | en |
dc.date.accessioned | 2019-02-09T00:31:41Z | |
dc.date.available | 2019-02-09T00:31:41Z | |
dc.date.issued | 2019-05 | en |
dc.identifier.issn | 1424-0637 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/289085 | |
dc.description.abstract | We develop a scattering theory for the linear wave equation □ψ=0 on the interior of Reissner-Nordström black holes, connecting the fixed frequency picture to the physical space picture. Our main result gives the existence, uniqueness and asymptotic completeness of finite energy scattering states. The past and future scattering states are represented as suitable traces of the solution ψ on the bifurcate event and Cauchy horizons. The heart of the proof is to show that after separation of variables one has uniform boundedness of the reflection and transmission coefficients of the resulting radial o.d.e. over all frequencies ω and ℓ. This is non-trivial because the natural T conservation law is sign-indefinite in the black hole interior. In the physical space picture, our results imply that the Cauchy evolution from the event horizon to the Cauchy horizon is a Hilbert space isomorphism, where the past (resp. future) Hilbert space is defined by the finiteness of the degenerate T energy fluxes on both components of the event (resp. Cauchy) horizon. Finally, we prove that, in contrast to the above, for a generic set of cosmological constants Λ, there is no analogous finite T energy scattering theory for either the linear wave equation or the Klein-Gordon equation with conformal mass on the (anti-) de Sitter-Reissner-Nordström interior. | |
dc.language | en | en |
dc.publisher | Birkhauser Verlag | |
dc.title | A Scattering Theory for Linear Waves on the Interior of Reissner–Nordström Black Holes | en |
dc.type | Article | |
prism.endingPage | 1650 | |
prism.issueIdentifier | 5 | en |
prism.publicationDate | 2019 | en |
prism.publicationName | Annales Henri Poincaré | en |
prism.startingPage | 1583 | |
prism.volume | 20 | en |
dc.identifier.doi | 10.17863/CAM.36347 | |
rioxxterms.versionofrecord | 10.1007/s00023-019-00760-z | en |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2019-05 | en |
dc.identifier.eissn | 1424-0661 | |
rioxxterms.type | Journal Article/Review | en |
cam.issuedOnline | 2019-02-13 | en |
cam.orpheus.success | Thu Jan 30 10:51:26 GMT 2020 - Embargo updated | * |
rioxxterms.freetoread.startdate | 2020-02-01 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge