Repository logo
 

Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Compañón, Ismael 
Guerreiro, Ana 
Mangini, Vincenzo 
Castro-López, Jorge 
Escudero-Casao, Margarita 

Abstract

GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors.

Description

Keywords

Animals, Antibodies, Monoclonal, Antigens, Neoplasm, Breast Neoplasms, Carbohydrates, Drug Design, Female, Glycopeptides, Glycosides, Glycosylation, Humans, Mammary Neoplasms, Experimental, Mice, Mice, Inbred BALB C, Molecular Structure, Oxygen, Selenium, Sulfur

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

141

Publisher

American Chemical Society (ACS)
Sponsorship
The Royal Society (uf110046)
European Research Council (676832)
Royal Society (URF\R\180019)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (675007)